2 research outputs found

    Lactobacillus acidophilus attenuates Salmonella-induced stress of epithelial cells by modulating tight-junction genes and cytokine responses

    No full text
    Scope: Salmonellosis is a prevalent food-borne illness that causes diarrhea in over 130 million humans yearly and can lead to death. There is an urgent need to find alternatives to antibiotics as many salmonellae are now multidrug resistant. As such, specific beneficial bacteria and dietary fibers can be an alternative as they may prevent Salmonella Typhimurium (STM) infection and spreading by strengthening intestinal barrier function. Methods and Results: We tested whether immune active long-chain inulin-type fructans and/or L. acidophilus W37, L. brevis W63, and L. casei W56 can strengthen barrier integrity of intestinal Caco-2 cells in the presence and absence of a STM. Effects of the ingredients on intestinal barrier function were first evaluated by quantifying trans-epithelial electric resistance (TEER) and regulation of gene expression by microarray. Only L. acidophilus had effects on TEER and modulated a group of 26 genes related to tight-junctions. Inulin-type fructans, L. brevis W63 and L. casei W56 regulated other genes, unrelated to tight-junctions. L. acidophilus also had unique effects on a group of six genes regulating epithelial phenotype toward follicle-associated epithelium. L. acidophilus W37 was therefore selected for a challenge with STM and prevented STM-induced barrier disruption and decreased secretion of IL-8. Conclusion: L. acidophilus W37 increases TEER and can protect against STM induced disruption of gut epithelial cells integrity in vitro. Our results suggest that selection of specific bacterial strains for enforcing barrier function may be a promising strategy to reduce or prevent STM infections.</p

    Higher Chain Length Distribution in Debranched Type-3 Resistant Starches (RS3) Increases TLR Signaling and Supports Dendritic Cell Cytokine Production

    No full text
    Scope: Resistant starches (RSs) are classically considered to elicit health benefits through fermentation. However, it is recently shown that RSs can also support health by direct immune interactions. Therefore, it has been hypothesized that the structural traits of RSs might impact the health benefits associated with their consumption. Methods and results: Effects of crystallinity, molecular weight, and chain length distribution of RSs are determined on immune Toll-like receptors (TLRs), dendritic cells (DCs), and T-cell cytokines production. To this end, four type-3 RSs (RS3) are compared, namely Paselli WFR, JD150, debranched Etenia, and Amylose fraction V, which are extracted from potatoes and enzymatically modified. Dextrose equivalent seems to be the most important feature influencing immune signaling via activation of TLRs. TLR2 and TLR4 are most strongly stimulated. Especially Paselli WFR is a potent activator of multiple receptors. Moreover, the presence of amylose, even to residual levels, enhances DC and T-cell cytokine responses. Paselli WFR and Amylose fraction V influence T-cell polarization. Conclusions: It has been shown here that chain length and particularly dextrose equivalent are critical features for immune activation. This knowledge might lead to tailoring and design of immune-active RS formulations.</p
    corecore