147 research outputs found

    The Freezing of Random RNA

    Full text link
    We study secondary structures of random RNA molecules by means of a renormalized field theory based on an expansion in the sequence disorder. We show that there is a continuous phase transition from a molten phase at higher temperatures to a low-temperature glass phase. The primary freezing occurs above the critical temperature, with local islands of stable folds forming within the molten phase. The size of these islands defines the correlation length of the transition. Our results include critical exponents at the transition and in the glass phase.Comment: 4 pages, 8 figures. v2: presentation improve

    Evolutionary games and quasispecies

    Full text link
    We discuss a population of sequences subject to mutations and frequency-dependent selection, where the fitness of a sequence depends on the composition of the entire population. This type of dynamics is crucial to understand the evolution of genomic regulation. Mathematically, it takes the form of a reaction-diffusion problem that is nonlinear in the population state. In our model system, the fitness is determined by a simple mathematical game, the hawk-dove game. The stationary population distribution is found to be a quasispecies with properties different from those which hold in fixed fitness landscapes.Comment: 7 pages, 2 figures. Typos corrected, references updated. An exact solution for the hawks-dove game is provide

    Directed polymers in high dimensions

    Full text link
    We study directed polymers subject to a quenched random potential in d transversal dimensions. This system is closely related to the Kardar-Parisi-Zhang equation of nonlinear stochastic growth. By a careful analysis of the perturbation theory we show that physical quantities develop singular behavior for d to 4. For example, the universal finite size amplitude of the free energy at the roughening transition is proportional to (4-d)^(1/2). This shows that the dimension d=4 plays a special role for this system and points towards d=4 as the upper critical dimension of the Kardar-Parisi-Zhang problem.Comment: 37 pages REVTEX including 4 PostScript figure

    Vicinal Surfaces and the Calogero-Sutherland Model

    Full text link
    A miscut (vicinal) crystal surface can be regarded as an array of meandering but non-crossing steps. Interactions between the steps are shown to induce a faceting transition of the surface between a homogeneous Luttinger liquid state and a low-temperature regime consisting of local step clusters in coexistence with ideal facets. This morphological transition is governed by a hitherto neglected critical line of the well-known Calogero-Sutherland model. Its exact solution yields expressions for measurable quantities that compare favorably with recent experiments on Si surfaces.Comment: 4 pages, revtex, 2 figures (.eps

    New Criticality of 1D Fermions

    Full text link
    One-dimensional massive quantum particles (or 1+1-dimensional random walks) with short-ranged multi-particle interactions are studied by exact renormalization group methods. With repulsive pair forces, such particles are known to scale as free fermions. With finite mm-body forces (m = 3,4,...), a critical instability is found, indicating the transition to a fermionic bound state. These unbinding transitions represent new universality classes of interacting fermions relevant to polymer and membrane systems. Implications for massless fermions, e.g. in the Hubbard model, are also noted. (to appear in Phys. Rev. Lett.)Comment: 10 pages (latex), with 2 figures (not included

    A Solvable Sequence Evolution Model and Genomic Correlations

    Full text link
    We study a minimal model for genome evolution whose elementary processes are single site mutation, duplication and deletion of sequence regions and insertion of random segments. These processes are found to generate long-range correlations in the composition of letters as long as the sequence length is growing, i.e., the combined rates of duplications and insertions are higher than the deletion rate. For constant sequence length, on the other hand, all initial correlations decay exponentially. These results are obtained analytically and by simulations. They are compared with the long-range correlations observed in genomic DNA, and the implications for genome evolution are discussed.Comment: 4 pages, 4 figure

    Bundles of Interacting Strings in Two Dimensions

    Full text link
    Bundles of strings which interact via short-ranged pair potentials are studied in two dimensions. The corresponding transfer matrix problem is solved analytically for arbitrary string number N by Bethe ansatz methods. Bundles consisting of N identical strings exhibit a unique unbinding transition. If the string bundle interacts with a hard wall, the bundle may unbind from the wall via a unique transition or a sequence of N successive transitions. In all cases, the critical exponents are independent of N and the density profile of the strings exhibits a scaling form that approaches a mean-field profile in the limit of large N.Comment: 8 pages (latex) with two figure

    On Growth, Disorder, and Field Theory

    Full text link
    This article reviews recent developments in statistical field theory far from equilibrium. It focuses on the Kardar-Parisi-Zhang equation of stochastic surface growth and its mathematical relatives, namely the stochastic Burgers equation in fluid mechanics and directed polymers in a medium with quenched disorder. At strong stochastic driving -- or at strong disorder, respectively -- these systems develop nonperturbative scale-invariance. Presumably exact values of the scaling exponents follow from a self-consistent asymptotic theory. This theory is based on the concept of an operator product expansion formed by the local scaling fields. The key difference to standard Lagrangian field theory is the appearance of a dangerous irrelevant coupling constant generating dynamical anomalies in the continuum limit.Comment: review article, 50 pages (latex), 10 figures (eps), minor modification of original versio

    Quantized Scaling of Growing Surfaces

    Full text link
    The Kardar-Parisi-Zhang universality class of stochastic surface growth is studied by exact field-theoretic methods. From previous numerical results, a few qualitative assumptions are inferred. In particular, height correlations should satisfy an operator product expansion and, unlike the correlations in a turbulent fluid, exhibit no multiscaling. These properties impose a quantization condition on the roughness exponent χ\chi and the dynamic exponent zz. Hence the exact values χ=2/5,z=8/5\chi = 2/5, z = 8/5 for two-dimensional and χ=2/7,z=12/7\chi = 2/7, z = 12/7 for three-dimensional surfaces are derived.Comment: 4 pages, revtex, no figure

    Patterns in the Kardar-Parisi-Zhang equation

    Full text link
    We review a recent asymptotic weak noise approach to the Kardar-Parisi-Zhang equation for the kinetic growth of an interface in higher dimensions. The weak noise approach provides a many body picture of a growing interface in terms of a network of localized growth modes. Scaling in 1d is associated with a gapless domain wall mode. The method also provides an independent argument for the existence of an upper critical dimension.Comment: 8 pages revtex, 4 eps figure
    • …
    corecore