5 research outputs found

    Ionotrope Glutamatrezeptoren als Targetstrukturen zur Modulation der Strahlenwirkung bei Glioblastomzellen

    Get PDF
    Glioblastoma Multiforme (GBM) ist einer der hĂ€ufigsten und aggressivsten malignen Gehirntumore des Menschen und zeichnet sich durch eine hohe Strahlenresistenz und InvasivitĂ€t aus. Verschiedene Zelllinien zeigen, dass Glioblastome den exzitatorischen Neurotransmitter Glutamat in Konzentrationen freisetzen, die ausreichen um die Zellproliferation, Infiltration und das ZellĂŒberleben der Tumorzellen zu stimulieren. Zudem verursacht die erhöhte Glutamat Konzentration neuronalen Zelltod im peritumoralen Gewebe. Neben der physiologischen Rolle von Glutamat, die exzitatorische synaptische Transmission nach Bindung an postsynaptischen ionotropen Glutamatrezeptoren (iGluRs) zu vermitteln, ist es zudem entscheidend fĂŒr die Gehirnentwicklung und kognitive Funktionen, wie Lernen und GedĂ€chtnisbildung. Unter diesen Bedingungen wird die Aktivierung von iGluRs zum Nukleus durch eine Ca2+-Signalkaskade ĂŒbersetzt, welche zur Phosphorylierung des cAMP-responsive element binding Protein (CREB) fĂŒhrt. Dies fördert letztendlich das neuronale Überleben und die PlastizitĂ€t. Seit die Expression von iGluRs in Tumorzellen nachgewiesen wurde, wird vermutet, dass die glutamaterge SignalĂŒbertragung in Glioblastomen an der Metastasierung und einer erhöhten Resistenz gegenĂŒber einer Strahlen- und Chemotherapie beteiligt ist. Dementsprechend war das Ziel dieser Arbeit die Wirkung von Glutamat und ionisierender Bestrahlung (IR) auf das ZellĂŒberleben, die Migration und die DNA-Schadensantwort (DDR) in Glioblastomzellen zu untersuchen. Der Gedanke dahinter war die vermeintliche Interferenz der glutamatergen SignalĂŒbertragung und der DDR zu untersuchen, um Strategien zu entschlĂŒsseln, die eine zielgerichtete Therapie fĂŒr GBM ermöglichen. Der erste experimentelle Schritt bestand darin, die Expression von verschiedenen NMDA-, AMPA- und Kainat Rezeptoren der iGluR-Familie in unterschiedlichen GBM Zelllinien zu untersuchen. Die humanen Grad IV Glioblastomzellen (LN-229) zeigten eine robuste funktionelle Expression von NMDAR und AMPAR mithilfe von Patch Clamp Ableitungen. Bemerkenswerterweise wurde im Hinblick darauf eine unterschiedliche Expression der Glutamat-bindenden NMDAR NR2A und NR2B Untereinheiten im Soma und in MigrationsfortsĂ€tzen der Zellen mittels Immunzytochemie gefunden. Interessanterweise waren LN-229 Zellen in der Lage Glutamat in exzitotoxischen Konzentrationen in das extrazellulĂ€re Medium freizusetzen. Deshalb wurde diese Zelllinie fĂŒr weiterfĂŒhrende Versuche verwendet und mit Glutamat Konzentrationen von 10 mM, spezifischen Glutamatrezeptor Antagonisten und IR mit klinischen Dosen behandelt. Reparaturkinetiken strahleninduzierter DNA DoppelstrangbrĂŒche (DSBs) wurden durch die Immunfluoreszenz des phosphorylierten Histon H2AX visualisiert und durch zĂ€hlen von H2AX Foci quantifiziert. Die Untersuchung der Anzahl an H2AX Foci zu unterschiedlichen Zeitpunkten nach Bestrahlung offenbarte, dass die DDR in Anwesenheit von Glutamat signifikant verbessert wurde. Im Gegensatz dazu verschlechterten der NMDAR Kanalblocker MK-801, der Ca2+-Chelator Bapta-AM und der spezifische AMPAR Antagonist NBQX signifikant die Reparatur von DNA DSBs. Indessen zeigten Zellzyklusanalysen keinen Effekt auf den G2-Zellzykluskontrollpunkt, was darauf hindeutet, dass Glutamat einen spezifischen Effekt auf die DNA Reparatur hat. Im nĂ€chsten experimentellen Schritt wurde der Effekt von Glutamat und iGluR Antagonisten auf die Zellmigration untersucht. Die Ergebnisse zeigen, dass iGluR Antagonisten mit einem zerstörenden Effekt auf die DDR auch die Migration von LN-229 Zellen inhibieren, sogar nach Bestrahlung. Übereinstimmend mit der Expression der NR2B Untereinheit in MigrationsfortsĂ€tzen mittels Immunzytochemie konnte der NR2B-spezifische Antagonist Ifenprodil die Migration von LN-229 Glioblastomzellen selektiv inhibieren, was zusĂ€tzlich komplexe Effekte von Glutamat in LN-229 Zellen andeutet. Da die Wirkung von Glutamat auf iGluRs das neuronale Überleben und die PlastizitĂ€t durch die Aktivierung des CREB Signalwegs stimuliert, wurde das Expressionslevel von pCREB in LN-229 Zellen analysiert. Western Blot Analysen und die Verwendung eines spezifischen Inhibitors des CREB Signalwegs weisen auf eine verstĂ€rkte DDR nach Aktivierung von CREB hin. ErwĂ€hnenswert ist die Phosphorylierung von CREB durch IR und Glutamat Behandlung, was CREB als SchlĂŒsselfaktor bei der Glutamat-vermittelten DNA-Reparatur Effizienz erkennen lĂ€sst. Um das klinische Potential von iGluR Antagonisten zur Optimierung herkömmlicher Therapien zu verifizieren wurde letztendlich das Medikament Memantin getestet. Memantin ist ein schwach affiner NMDAR Antagonist und wird zur Behandlung von Alzheimer Patienten eingesetzt (in den USA unter dem Namen Namenda verkauft). Die Behandlung von LN-229 Zellen mit 50 ”M Memantin Ă€ußerte sich in einer verminderten ÜberlebensfĂ€higkeit und einer Sensibilisierung gegenĂŒber Bestrahlung durch Blocken der NMDAR-vermittelten glutamatergen SignalĂŒbertragung. Die Daten weisen auf eine bedeutende Rolle des Neurotransmitters Glutamat fĂŒr die Migration von Glioblastomzellen und die iGluR-aktivierte Effizienz der DDR nach IR hin und heben das klinische Potential von iGluR Antagonisten zur Optimierung einer Strahlentherapie bei GBM hervor

    Analysis of M4 Transmembrane Segments in NMDA Receptor Function: A Negative Allosteric Modulatory Site at the GluN1 M4 is Determining the Efficiency of Neurosteroid Modulation

    Get PDF
    Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that play a crucial role in excitatory synaptic transmission in the central nervous system. Each subunit contributes with three helical transmembrane segments (M1, M3, and M4) and a pore loop (M2) to form the channel pore. Recent studies suggest that the architecture of all eukaryotic iGluRs derives from a common prokaryotic ancestral receptor that lacks M4 and consists only of transmembrane segments M1 and M3. Although significant contribution has emerged in the last years, the role of this additionally evolved transmembrane segment in iGluR assembly and function remains unclear. Here, we have investigated how deletions and mutations of M4 in members of the NMDA receptor (NMDAR) subfamily, the conventional heteromeric GluN1/GluN2 and glycine-gated GluN1/GluN3 NMDARs, affect expression and function in Xenopus oocytes. We show that deletion of M4 in the GluN1, GluN2A, or GluN3A subunit, despite retained receptor assembly and cell surface expression, results in nonfunctional membrane receptors. Coexpression of the corresponding M4 as an isolated peptide in M4-deleted receptors rescued receptor function of GluN1/GluN2A NMDARs without altering the apparent affinity of glutamate or glycine. Electrophysiological analyses of agonist-induced receptor function and its modulation by the neurosteroid pregnenolone sulfate (PS) at mutations of the GluN1-M4/GluN2/3-transmembrane interfaces indicate a crucial role of position M813 in M4 of GluN1 for functional coupling to the core receptor and the negative modulatory effects of PS. Substitution of residues and insertion of interhelical disulfide bridges confirmed interhelical interactions of positions in M4 of GluN1 with residues of transmembrane segments of neighboring subunits. Our results show that although M4s in NMDARs are not important for receptor assembly and surface expression, the residues at the subunit interface are substantially involved in M4 recognition of the core receptor and regulation of PS efficacy. Because mutations in the M4 of GluN1 specifically resulted in loss of PS-induced inhibition of GluN1/GluN2A and GluN1/GluN3A NMDAR currents, our results point to distinct roles of M4s in NMDAR modulation and highlight the importance of the evolutionarily newly evolved M4 for selective in vivo modulation of glutamate- and glycine-activated NMDARs by steroids

    Ionotrope Glutamatrezeptoren als Targetstrukturen zur Modulation der Strahlenwirkung bei Glioblastomzellen

    No full text
    Glioblastoma Multiforme (GBM) ist einer der hĂ€ufigsten und aggressivsten malignen Gehirntumore des Menschen und zeichnet sich durch eine hohe Strahlenresistenz und InvasivitĂ€t aus. Verschiedene Zelllinien zeigen, dass Glioblastome den exzitatorischen Neurotransmitter Glutamat in Konzentrationen freisetzen, die ausreichen um die Zellproliferation, Infiltration und das ZellĂŒberleben der Tumorzellen zu stimulieren. Zudem verursacht die erhöhte Glutamat Konzentration neuronalen Zelltod im peritumoralen Gewebe. Neben der physiologischen Rolle von Glutamat, die exzitatorische synaptische Transmission nach Bindung an postsynaptischen ionotropen Glutamatrezeptoren (iGluRs) zu vermitteln, ist es zudem entscheidend fĂŒr die Gehirnentwicklung und kognitive Funktionen, wie Lernen und GedĂ€chtnisbildung. Unter diesen Bedingungen wird die Aktivierung von iGluRs zum Nukleus durch eine Ca2+-Signalkaskade ĂŒbersetzt, welche zur Phosphorylierung des cAMP-responsive element binding Protein (CREB) fĂŒhrt. Dies fördert letztendlich das neuronale Überleben und die PlastizitĂ€t. Seit die Expression von iGluRs in Tumorzellen nachgewiesen wurde, wird vermutet, dass die glutamaterge SignalĂŒbertragung in Glioblastomen an der Metastasierung und einer erhöhten Resistenz gegenĂŒber einer Strahlen- und Chemotherapie beteiligt ist. Dementsprechend war das Ziel dieser Arbeit die Wirkung von Glutamat und ionisierender Bestrahlung (IR) auf das ZellĂŒberleben, die Migration und die DNA-Schadensantwort (DDR) in Glioblastomzellen zu untersuchen. Der Gedanke dahinter war die vermeintliche Interferenz der glutamatergen SignalĂŒbertragung und der DDR zu untersuchen, um Strategien zu entschlĂŒsseln, die eine zielgerichtete Therapie fĂŒr GBM ermöglichen. Der erste experimentelle Schritt bestand darin, die Expression von verschiedenen NMDA-, AMPA- und Kainat Rezeptoren der iGluR-Familie in unterschiedlichen GBM Zelllinien zu untersuchen. Die humanen Grad IV Glioblastomzellen (LN-229) zeigten eine robuste funktionelle Expression von NMDAR und AMPAR mithilfe von Patch Clamp Ableitungen. Bemerkenswerterweise wurde im Hinblick darauf eine unterschiedliche Expression der Glutamat-bindenden NMDAR NR2A und NR2B Untereinheiten im Soma und in MigrationsfortsĂ€tzen der Zellen mittels Immunzytochemie gefunden. Interessanterweise waren LN-229 Zellen in der Lage Glutamat in exzitotoxischen Konzentrationen in das extrazellulĂ€re Medium freizusetzen. Deshalb wurde diese Zelllinie fĂŒr weiterfĂŒhrende Versuche verwendet und mit Glutamat Konzentrationen von 10 mM, spezifischen Glutamatrezeptor Antagonisten und IR mit klinischen Dosen behandelt. Reparaturkinetiken strahleninduzierter DNA DoppelstrangbrĂŒche (DSBs) wurden durch die Immunfluoreszenz des phosphorylierten Histon H2AX visualisiert und durch zĂ€hlen von H2AX Foci quantifiziert. Die Untersuchung der Anzahl an H2AX Foci zu unterschiedlichen Zeitpunkten nach Bestrahlung offenbarte, dass die DDR in Anwesenheit von Glutamat signifikant verbessert wurde. Im Gegensatz dazu verschlechterten der NMDAR Kanalblocker MK-801, der Ca2+-Chelator Bapta-AM und der spezifische AMPAR Antagonist NBQX signifikant die Reparatur von DNA DSBs. Indessen zeigten Zellzyklusanalysen keinen Effekt auf den G2-Zellzykluskontrollpunkt, was darauf hindeutet, dass Glutamat einen spezifischen Effekt auf die DNA Reparatur hat. Im nĂ€chsten experimentellen Schritt wurde der Effekt von Glutamat und iGluR Antagonisten auf die Zellmigration untersucht. Die Ergebnisse zeigen, dass iGluR Antagonisten mit einem zerstörenden Effekt auf die DDR auch die Migration von LN-229 Zellen inhibieren, sogar nach Bestrahlung. Übereinstimmend mit der Expression der NR2B Untereinheit in MigrationsfortsĂ€tzen mittels Immunzytochemie konnte der NR2B-spezifische Antagonist Ifenprodil die Migration von LN-229 Glioblastomzellen selektiv inhibieren, was zusĂ€tzlich komplexe Effekte von Glutamat in LN-229 Zellen andeutet. Da die Wirkung von Glutamat auf iGluRs das neuronale Überleben und die PlastizitĂ€t durch die Aktivierung des CREB Signalwegs stimuliert, wurde das Expressionslevel von pCREB in LN-229 Zellen analysiert. Western Blot Analysen und die Verwendung eines spezifischen Inhibitors des CREB Signalwegs weisen auf eine verstĂ€rkte DDR nach Aktivierung von CREB hin. ErwĂ€hnenswert ist die Phosphorylierung von CREB durch IR und Glutamat Behandlung, was CREB als SchlĂŒsselfaktor bei der Glutamat-vermittelten DNA-Reparatur Effizienz erkennen lĂ€sst. Um das klinische Potential von iGluR Antagonisten zur Optimierung herkömmlicher Therapien zu verifizieren wurde letztendlich das Medikament Memantin getestet. Memantin ist ein schwach affiner NMDAR Antagonist und wird zur Behandlung von Alzheimer Patienten eingesetzt (in den USA unter dem Namen Namenda verkauft). Die Behandlung von LN-229 Zellen mit 50 ”M Memantin Ă€ußerte sich in einer verminderten ÜberlebensfĂ€higkeit und einer Sensibilisierung gegenĂŒber Bestrahlung durch Blocken der NMDAR-vermittelten glutamatergen SignalĂŒbertragung. Die Daten weisen auf eine bedeutende Rolle des Neurotransmitters Glutamat fĂŒr die Migration von Glioblastomzellen und die iGluR-aktivierte Effizienz der DDR nach IR hin und heben das klinische Potential von iGluR Antagonisten zur Optimierung einer Strahlentherapie bei GBM hervor

    Analysis of M4 Transmembrane Segments in NMDA Receptor Function : A Negative Allosteric Modulatory Site at the GluN1 M4 is Determining the Efficiency of Neurosteroid Modulation

    Get PDF
    Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that play a crucial role in excitatory synaptic transmission in the central nervous system. Each subunit contributes with three helical transmembrane segments (M1, M3, and M4) and a pore loop (M2) to form the channel pore. Recent studies suggest that the architecture of all eukaryotic iGluRs derives from a common prokaryotic ancestral receptor that lacks M4 and consists only of transmembrane segments M1 and M3. Although significant contribution has emerged in the last years, the role of this additionally evolved transmembrane segment in iGluR assembly and function remains unclear. Here, we have investigated how deletions and mutations of M4 in members of the NMDA receptor (NMDAR) subfamily, the conventional heteromeric GluN1/GluN2 and glycine-gated GluN1/GluN3 NMDARs, affect expression and function in oocytes. We show that deletion of M4 in the GluN1, GluN2A, or GluN3A subunit, despite retained receptor assembly and cell surface expression, results in nonfunctional membrane receptors. Coexpression of the corresponding M4 as an isolated peptide in M4-deleted receptors rescued receptor function of GluN1/GluN2A NMDARs without altering the apparent affinity of glutamate or glycine. Electrophysiological analyses of agonist-induced receptor function and its modulation by the neurosteroid pregnenolone sulfate (PS) at mutations of the GluN1-M4/GluN2/3-transmembrane interfaces indicate a crucial role of position M813 in M4 of GluN1 for functional coupling to the core receptor and the negative modulatory effects of PS. Substitution of residues and insertion of interhelical disulfide bridges confirmed interhelical interactions of positions in M4 of GluN1 with residues of transmembrane segments of neighboring subunits. Our results show that although M4s in NMDARs are not important for receptor assembly and surface expression, the residues at the subunit interface are substantially involved in M4 recognition of the core receptor and regulation of PS efficacy. Because mutations in the M4 of GluN1 specifically resulted in loss of PS-induced inhibition of GluN1/GluN2A and GluN1/GluN3A NMDAR currents, our results point to distinct roles of M4s in NMDAR modulation and highlight the importance of the evolutionarily newly evolved M4 for selective modulation of glutamate- and glycine-activated NMDARs by steroids

    NMDA Receptor-Mediated Signaling Pathways Enhance Radiation Resistance, Survival and Migration in Glioblastoma Cells—A Potential Target for Adjuvant Radiotherapy

    Get PDF
    Glioblastoma is one of the most aggressive malignant brain tumors, with a survival time less than 15 months and characterized by a high radioresistance and the property of infiltrating the brain. Recent data indicate that the malignancy of glioblastomas depends on glutamatergic signaling via ionotropic glutamate receptors. In this study we revealed functional expression of Ca2+-permeable NMDARs in three glioblastoma cell lines. Therefore, we investigated the impact of this receptor on cell survival, migration and DNA double-strand break (DSB) repair in the presence of both, glutamate and NMDAR antagonists, and after clinically relevant doses of ionizing radiation. Our results indicate that treatment with NMDAR antagonists slowed the growth and migration of glutamate-releasing LN229 cells, suggesting that activation of NMDARs facilitate tumor expansion. Furthermore, we found that DSB-repair upon radiation was more effective in the presence of glutamate. In contrast, antagonizing the NMDAR or the Ca2+-dependent transcription factor CREB impaired DSB-repair similarly and resulted in a radiosensitizing effect in LN229 and U-87MG cells, indicating a common link between NMDAR signaling and CREB activity in glioblastoma. Since the FDA-approved NMDAR antagonists memantine and ifenprodil showed differential radiosensitizing effects, these compounds may constitute novel optimizations for therapeutic interventions in glioblastoma
    corecore