16,048 research outputs found
Light Deflection, Lensing, and Time Delays from Gravitational Potentials and Fermat's Principle in the Presence of a Cosmological Constant
The contribution of the cosmological constant to the deflection angle and the
time delays are derived from the integration of the gravitational potential as
well as from Fermat's Principle. The findings are in agreement with recent
results using exact solutions to Einstein's equations and reproduce precisely
the new -term in the bending angle and the lens equation. The
consequences on time delay expressions are explored. While it is known that
contributes to the gravitational time delay, it is shown here that a
new -term appears in the geometrical time delay as well. Although
these newly derived terms are perhaps small for current observations, they do
not cancel out as previously claimed. Moreover, as shown before, at galaxy
cluster scale, the contribution can be larger than the second-order
term in the Einstein deflection angle for several cluster lens systems.Comment: 6 pages, 1 figure, matches version published in PR
PVLAS experiment, star cooling and BBN constraints: Possible interpretation with temperature dependent gauge symmetry breaking
It is known that the kinetic mixing of photon and another U(1)_ex gauge boson
can introduce millicharged particles. Millicharged particles of mass 0.1 eV
can explain the PVLAS experiment. We suggest a temperature dependent gauge
symmetry breaking of U(1)_ex for this idea to be consistent with astrophysical
and cosmological constraints.Comment: 9 pages, 3 figue
Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series
A nonlinear dynamics approach can be used in order to quantify complexity in
written texts. As a first step, a one-dimensional system is examined : two
written texts by one author (Lewis Carroll) are considered, together with one
translation, into an artificial language, i.e. Esperanto are mapped into time
series. Their corresponding shuffled versions are used for obtaining a "base
line". Two different one-dimensional time series are used here: (i) one based
on word lengths (LTS), (ii) the other on word frequencies (FTS). It is shown
that the generalized Hurst exponent and the derived curves
of the original and translated texts show marked differences. The original
"texts" are far from giving a parabolic function, - in contrast to
the shuffled texts. Moreover, the Esperanto text has more extreme values. This
suggests cascade model-like, with multiscale time asymmetric features as
finally written texts. A discussion of the difference and complementarity of
mapping into a LTS or FTS is presented. The FTS curves are more
opened than the LTS onesComment: preprint for PRE; 2 columns; 10 pages; 6 (multifigures); 3 Tables; 70
reference
Ground-based measurements of O3, NO2, OClO, and BrO during the 1987 Antarctic ozone depletion event
Near-ultraviolet absorption spectroscopy in the wavelength range from 330 to 370 nm was used to measure O3, NO2, OClO, and BrO at McMurdo Station (78S) during 1987. Visible absorption measurements of O3, NO2, and OClO were also obtained using the wavelength range from about 403 to 453 nm. These data are described and compared to observations obtained in 1986. It is shown that comparisons of observations in the two wavelength ranges provide a sensitive measure of the altitude where the bulk of atmospheric absorption takes place
Equation of state for Entanglement in a Fermi gas
Entanglement distance is the maximal separation between two entangled
electrons in a degenerate electron gas. Beyond that distance, all entanglement
disappears. We relate entanglement distance to degeneracy pressure both for
extreme relativistic and non-relativistic systems, and estimate the
entanglement distance in a white dwarf. Treating entanglement as a
thermodynamical quantity, we relate the entropy of formation and concurrence to
relative electron distance, pressure, and temperature, to form a new equation
of state for entanglement.Comment: To appear in Phys. Rev. A., 4 pages, 1 figur
Simulations of the angular dependence of the dipole-dipole interaction among Rydberg atoms
The dipole-dipole interaction between two Rydberg atoms depends on the
relative orientation of the atoms and on the change in the magnetic quantum
number. We simulate the effect of this anisotropy on the energy transport in an
amorphous many atom system subject to a homogeneous applied electric field. We
consider two experimentally feasible geometries and find that the effects
should be measurable in current generation imaging experiments. In both
geometries atoms of character are localized to a small region of space
which is immersed in a larger region that is filled with atoms of
character. Energy transfer due to the dipole-dipole interaction can lead to a
spread of character into the region initially occupied by atoms. Over
long timescales the energy transport is confined to the volume near the border
of the region which is suggestive of Anderson localization. We calculate a
correlation length of 6.3~m for one particular geometry.Comment: 6 pages, 5 figures, revised draf
Neutron Star Properties with Hyperons
In the light of the recent discovery of a neutron star with a mass accurately
determined to be almost two solar masses, it has been suggested that hyperons
cannot play a role in the equation of state of dense matter in
-equilibrium. We re-examine this issue in the most recent development of
the quark-meson coupling model. Within a relativistic Hartree-Fock approach and
including the full tensor structure at the vector-meson-baryon vertices, we
find that not only must hyperons appear in matter at the densities relevant to
such a massive star but that the maximum mass predicted is completely
consistent with the observation.Comment: Minor correction
Hands-on Gravitational Wave Astronomy: Extracting astrophysical information from simulated signals
In this paper we introduce a hands-on activity in which introductory
astronomy students act as gravitational wave astronomers by extracting
information from simulated gravitational wave signals. The process mimics the
way true gravitational wave analysis will be handled by using plots of a pure
gravitational wave signal. The students directly measure the properties of the
simulated signal, and use these measurements to evaluate standard formulae for
astrophysical source parameters. An exercise based on the discussion in this
paper has been written and made publicly available online for use in
introductory laboratory courses.Comment: 5 pages, 4 figures; submitted to Am. J. Phy
A Unified Approach to Attractor Reconstruction
In the analysis of complex, nonlinear time series, scientists in a variety of
disciplines have relied on a time delayed embedding of their data, i.e.
attractor reconstruction. The process has focused primarily on heuristic and
empirical arguments for selection of the key embedding parameters, delay and
embedding dimension. This approach has left several long-standing, but common
problems unresolved in which the standard approaches produce inferior results
or give no guidance at all. We view the current reconstruction process as
unnecessarily broken into separate problems. We propose an alternative approach
that views the problem of choosing all embedding parameters as being one and
the same problem addressable using a single statistical test formulated
directly from the reconstruction theorems. This allows for varying time delays
appropriate to the data and simultaneously helps decide on embedding dimension.
A second new statistic, undersampling, acts as a check against overly long time
delays and overly large embedding dimension. Our approach is more flexible than
those currently used, but is more directly connected with the mathematical
requirements of embedding. In addition, the statistics developed guide the user
by allowing optimization and warning when embedding parameters are chosen
beyond what the data can support. We demonstrate our approach on uni- and
multivariate data, data possessing multiple time scales, and chaotic data. This
unified approach resolves all the main issues in attractor reconstruction.Comment: 22 pages, revised version as submitted to CHAOS. Manuscript is
currently under review. 4 Figures, 31 reference
- …