32 research outputs found

    Effects of Force Distribution and Rebound on Electromagnetically Formed Sheet Metal

    Get PDF
    Electromagnetic forming (EMF) is a high speed forming process that has been shown to increase the formability of aluminum alloys under certain conditions. Many authors have reported significant increases in formability; however, there is as of yet no complete understanding of the process. Obtaining a gain in formability is not the only factor that must be considered when studying EMF. The process rapidly generates significant forces which lead to the deformation of the material at very high rates. The applied forces depend on the shape of the electromagnetic coil used, which leads to force distributions that may not be ideal for forming a particular part. Once the sheet is accelerated it will travel at high speeds until it impacts the die. This high speed impact results in the sheet rebounding from the die. Both the force distribution and the rebound affect the final shape of the part. This paper presents the results of experimental and numerical study carried out to determine the effect of the force distribution and the rebound on samples of conical and "v-channel" geometry. It was found that both sample geometries are affected by the force distribution and the rebound, with the v-channel samples being considerably more affected. The results indicate that these effects must be carefully considered when EMF processes are designed

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Tirs double coquille sur « Z » à Sandia National Laboratories

    No full text
    Un des problÚmes fondamentaux lors d'une implosion du type « Z-pinch », est le développement d'instabilités, notamment du type Raileigh-Taylor. Des résultats analytiques et numériques prévoient que certains profils de densité initiale permettent de réduire considérablement la croissance de telles instabilités. Un premier pas vers de tels profils initiaux, utilisant la technique de cage d'écureuil largement expérimentée a Sandia National Laboratories, NM, USA, est l'utilisation de doubles cages d'écureuil imbriquées l'une dans l'autre. Une série de tirs à double coquille ont donc été réalisés sur le générateur « Z » de la Sandia, et ont permis un accroissement de la puissance pic rayonnée de l'ordre de 40% par rapport à des coquilles simples

    An electrophysiologic computational model of the zebrafish heart

    Get PDF
    In recent years there has been a growing interest in the zebrafish thanks to its physiological characteristics similar to humans '. The following work aims to create a full electrophysiological computational model of the zebrafish heart with the ultimate purpose of assessing the influence of pathologies and drug administration. The model considers a full body and the two-chambers of a 3 days post fertilization zebrafish. A four-variable phenomenological Action Potential model is used to describe the action potential of different regions of the heart. Tissue conductivity has been calibrated in order to reproduce the activation sequence described in literature. This model allows the evaluation of the main electrophysiological parameters in terms of activation sequence and timing, AP morphology (i.e., APD{90}, AP amplitude, maximum and minimum AP derivatives), and ECG morphology (i.e., P-wave, T-wave, and QRS-complex amplitudes and durations)

    The risk of East Coast fever to livestock in Africa on a geographic basis

    No full text
    corecore