49 research outputs found
A Posteriori error control & adaptivity for Crank-Nicolson finite element approximations for the linear Schrodinger equation
We derive optimal order a posteriori error estimates for fully discrete
approximations of linear Schr\"odinger-type equations, in the
norm. For the discretization in time we use the Crank-Nicolson
method, while for the space discretization we use finite element spaces that
are allowed to change in time. The derivation of the estimators is based on a
novel elliptic reconstruction that leads to estimates which reflect the
physical properties of Schr\"odinger equations. The final estimates are
obtained using energy techniques and residual-type estimators. Various
numerical experiments for the one-dimensional linear Schr\"odinger equation in
the semiclassical regime, verify and complement our theoretical results. The
numerical implementations are performed with both uniform partitions and
adaptivity in time and space. For adaptivity, we further develop and analyze an
existing time-space adaptive algorithm to the cases of Schr\"odinger equations.
The adaptive algorithm reduces the computational cost substantially and
provides efficient error control for the solution and the observables of the
problem, especially for small values of the Planck constant
On a selection principle for multivalued semiclassical flows
We study the semiclassical behaviour of solutions of a Schr ̈odinger equation with a scalar po- tential displaying a conical singularity. When a pure state interacts strongly with the singularity of the flow, there are several possible classical evolutions, and it is not known whether the semiclassical limit cor- responds to one of them. Based on recent results, we propose that one of the classical evolutions captures the semiclassical dynamics; moreover, we propose a selection principle for the straightforward calculation of the regularized semiclassical asymptotics. We proceed to investigate numerically the validity of the proposed scheme, by employing a solver based on a posteriori error control for the Schr ̈odinger equation. Thus, for the problems we study, we generate rigorous upper bounds for the error in our asymptotic approximation. For 1-dimensional problems without interference, we obtain compelling agreement between the regularized asymptotics and the full solution. In problems with interference, there is a quantum effect that seems to survive in the classical limit. We discuss the scope of applicability of the proposed regularization approach, and formulate a precise conjecture
Modulation instability and convergence of the random-phase approximation for stochastic sea states
The nonlinear Schrödinger equation is widely used as an approximate model for the evolution in time of the water wave envelope. In the context of simulating ocean waves, initial conditions are typically generated from a measured power spectrum using the random-phase approximation, and periodized on an interval of length L. It is known that most realistic ocean waves power spectra do not exhibit modulation instability, but the most severe ones do; it is thus a natural question to ask whether the periodized random-phase approximation has the correct stability properties. In this work, we specify a random-phase approximation scaling, so that, in the limit of L→∞ ,the stability properties of the periodized problem are identical to those of the continuous power spectrum on the infinite line. Moreover, it is seen through concrete examples that using a too short computational domain can completely suppress the modulation instability.Peer reviewe
Pointwise a posteriori error bounds for blow-up in the semilinear heat equation
This work is concerned with the development of an adaptive space-time numerical method, based on a rigorous a posteriori error bound, for the semilinear heat equation with a general local Lipschitz reaction term whose solution may blow up in finite time. More specifically, conditional a posteriori error bounds are derived in the LcoLco norm for the first order (Euler) in time, implicit-explicit, conforming finite element method in space discretization of the problem. Numerical experiments applied to both blow-up and non-blow-up cases highlight the generality of our approach and complement the theoretical results.</p
A Posteriori Error Analysis for Evolution Nonlinear Schrodinger Equations Up to the Critical Exponent
We provide a posteriori error estimates in the L8([0, T]; L2(?))-norm for relaxation time discrete and fully discrete schemes for a class of evolution nonlinear Schrödinger equations up to the critical exponent. In particular for the discretization in time we use the relaxation Crank–Nicolson-type scheme introduced by Besse in [SIAM J. Numer. Anal., 42 (2004), pp. 934–952]. The space discretization consists of finite element spaces that are allowed to change between time steps. The estimates are obtained using the reconstruction technique. Through this technique the problem is converted to a perturbation of the original partial differential equation and this makes it possible to use nonlinear stability arguments as in the continuous problem. Our analysis includes as special cases the cubic and quintic nonlinear Schrödinger equations in one spatial dimension and the cubic nonlinear Schrödinger equation in two spatial dimensions. Numerical results illustrate that the estimates are indeed of optimal order of convergence.</p
Modulation instability and convergence of the random phase approximation for stochastic sea states
The nonlinear Schrödinger equation is widely used as an approximate model for the evolution in time of the water wave envelope. In the context of simulating ocean waves, initial conditions are typically generated from a measured power spectrum using the random-phase approximation, and periodized on an interval of length L. It is known that most realistic ocean waves power spectra do not exhibit modulation instability, but the most severe ones do; it is thus a natural question to ask whether the periodized random-phase approximation has the correct stability properties. In this work, we specify a random-phase approximation scaling, so that, in the limit of L → ∞ , the stability properties of the periodized problem are identical to those of the continuous power spectrum on the infinite line. Moreover, it is seen through concrete examples that using a too short computational domain can completely suppress the modulation instability.<br/
Modulation instability and convergence of the random phase approximation for stochastic sea states
The nonlinear Schr\"odinger equation is widely used as an approximate model
for the evolution in time of the water wave envelope. In the context of
simulating ocean waves, initial conditions are typically generated from a
measured power spectrum using the random phase approximation, and periodized on
an interval of length . It is known that most realistic ocean waves power
spectra do not exhibit modulation instability, but the most severe ones do; it
is thus a natural question to ask whether the periodized random phase
approximation has the correct stability properties. In this work we specify a
random phase approximation scaling so that, in the limit of the
stability properties of the periodized problem are identical to those of the
continuous power spectrum on the infinite line. Moreover, it is seen through
concrete examples that using a too short computational domain can completely
suppress the modulation instability
Analysis for time discrete approximations of blow-up solutions of semilinear parabolic equations
We prove a posteriori error estimates for time discrete approximations, for semilinear parabolic equations with solutions that might blow up in finite time. In particular we consider the backward Euler and the Crank–Nicolson methods. The main tools that are used in the analysis are the reconstruction technique and energy methods combined with appropriate fixed point arguments. The final estimates we derive are conditional and lead to error control near the blow up time