331 research outputs found

    Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases

    Get PDF
    We define phosphovariants as genetic variations that change phosphorylation sites or their interacting kinases. Considering the essential role of phosphorylation in protein functions, it is highly likely that phosphovariants change protein functions and may constitute a proportion of the mechanisms by which genetic variations cause individual differences or diseases. We categorized phosphovariants into three subtypes and developed a system that predicts them. Our method can be used to screen important polymorphisms and help to identify the mechanisms of genetic diseases

    Handspinning Enabled Highly Concentrated Carbon Nanotubes with Controlled Orientation in Nanofibers

    Get PDF
    The novel method, handspinning (HS), was invented by mimicking commonly observed methods in our daily lives. The use of HS allows us to fabricate carbon nanotube-reinforced nanofibers (CNT-reinforced nanofibers) by addressing three significant challenges: (i) the difficulty of forming nanofibers at high concentrations of CNTs, (ii) aggregation of the CNTs, and (iii) control of the orientation of the CNTs. The handspun nanofibers showed better physical properties than fibers fabricated by conventional methods, such as electrospinning. Handspun nanofibers retain a larger amount of CNTs than electrospun nanofibers, and the CNTs are easily aligned uniaxially. We attributed these improvements provided by the HS process to simple mechanical stretching force, which allows for orienting the nanofillers along with the force direction without agglomeration, leading to increased contact area between the CNTs and the polymer matrix, thereby providing enhanced interactions. HS is a simple and straightforward method as it does not require an electric field, and, hence, any kinds of polymers and solvents can be applicable. Furthermore, it is feasible to retain a large amount of various nanofillers in the fibers to enhance their physical and chemical properties. Therefore, HS provides an effective pathway to create new types of reinforced nanofibers with outstanding properties.ArticleSCIENTIFIC REPORTS. 6:37590 (2016)journal articl

    Prognostic factors for aorta remodeling after thoracic endovascular aortic repair of complicated chronic DeBakey IIIb aneurysms

    Get PDF
    ObjectivesThe use of thoracic endovascular aortic repair (TEVAR) for chronic DeBakey III type b (CDIIIb) aneurysms is controversial. We analyzed the potential prognostic factors affecting aorta remodeling after this procedure.MethodsA total of 20 patients with CDIIIb aneurysms underwent TEVAR, with full coverage of reentry tears at the descending thoracic aorta. The potential factors affecting false lumen (FL) remodeling were analyzed, including reentry tears (communicating channels visible on the computed tomography angiogram), large intimal tears below the stent graft (≥2 consecutive axial cuts on the computed tomography angiogram), visceral branches arising from the FL, and intercostal arteries (ICAs) arising from the FL.ResultsAll the patients had uneventful in-hospital courses; 2 patients (10%) required reintervention during the follow-up period. Thirteen patients (65%) had complete thrombosis of the FL at stent graft segment. Compared with the complete thrombosis group, the partial thrombosis group had more reentry tears (1.8 vs 2.3, P = .48), large intimal tears (0.8 vs 1.7, P < .05), visceral branches arising from the FL (1.2 vs 2.3, P < .05), and ICAs arising from the FL (3.8 vs 5.1, P = .35). Reentry tears, visceral branches, and ICAs from the FL were significant negative prognostic factors for FL shrinkage (P < .05).ConclusionsAlthough reentry tears above the celiac trunk were fully covered, the visceral branches and ICAs from the FL and all communicating channels below the celiac trunk kept the FL pressurized and were unfavorable prognostic factors for aorta remodeling after TEVAR for CDIIIb aneurysms

    A highly hydrophilic water-insoluble nanofiber composite as an efficient and easily-handleable adsorbent for the rapid adsorption of cesium from radioactive wastewater

    Get PDF
    Herein, we report a new Prussian blue nanoparticle (PBNPs) incorporated polyvinyl alcohol (PVA) composite nanofiber (c-PBNPs/PVA) for the rapid adsorption of cesium (Cs) from radioactive wastewater. Initially, various electrospinning parameters such as solvent, PVA wt%, PBNPs wt% and glutaraldehyde (GA) wt% were extensively optimized to obtain a better physicochemical property of the c-PBNPs/PVA. In order to improve the water insoluble nature of the PVA, post cross-linking was carried out for the c-PBNPs/PVA using glutaraldehyde (GA) and HCl vapor as the cross-linker and catalyst, respectively. SEM images revealed the smooth and continuous morphology of the c-PBNPs/PVA composite nanofibers with diameters of 200–300 nm and lengths up to several millimeters. TEM images confirmed homogeneous dispersion and good incorporation of PBNPs into the PVA matrix. The amorphous nature of the c-PBNPs/PVA was confirmed by the XRD analysis. FT-IR spectra showed successful cross-linking of PVA with GA. It was found that the prepared composite nanofiber is highly hydrophilic and water-insoluble. The c-PBNPs/PVA showed an excellent and faster Cs adsorption rate of 96% after only 100 min. These results are comparable to those previously reported. After the Cs adsorption test, the c-PBNPs/PVA composite nanofiber can be easily separated from the wastewater.ArticleRSC ADVANCES. 4(103):59571-59578 (2014)journal articl

    SYNGAS PRODUCTION WITH A DUAL FLUIDIZED BED GASIFIER FOR POLYGENERATION

    Get PDF
    A pilot scale dual fluidized bed gasification system was developed for polygeneration with biomass. The gasification system is designed for supplying syngas for Fischer Tropsch (F-T) synthesis of bio-diesel and power generation with a syngas engine. Characteristics of biomass steam gasification were investigated in a lab scale bubbling fluidized bed, and hydrodynamics of a dual fluidized bed were investigated in a cold flow model. Based on the results from the lab scale test and cold flow model, a pilot scale dual fluidized bed gasifier was designed. In this paper, the developing process of the gasifier and preliminary results of system operation will be presented

    Optimal application of compressive palatal stents following mesiodens removal in pediatric patients:a Randomized Controlled Trial

    Get PDF
    There is no scientific evidence supporting the choice of a palatal stent in patients who underwent removal of an impacted supernumerary tooth. We aimed to investigate the effects of palatal stents in patients who underwent supernumerary tooth removal through a palatal approach and to suggest the optimal stent thickness and material. We recruited 144 patients who underwent extraction of a supernumerary tooth between the maxillary anterior teeth. Subjects were assigned to a control group (CG) or one of four compressive palatal stent groups (CPSGs) classified by the thickness and material of the thermoplastic acrylic stent used. Palatal gingival swelling and objective indices (healing, oral hygiene, gingival, and plaque) were evaluated before surgery and on postoperative days (PODs) 3, 7, and 14; pain/discomfort and the Child Oral Health Impact Profile (COHIP) were assessed as subjective indices of the effects of the stent. The CPSGs showed faster healing than did the CG on PODs 7 (P<0.001) and 14 (P=0.043); swelling was measured by 1.64±0.88 mm and 4.52±0.39 mm, respectively. Although swelling was least in the 4-mm hard group (0.92±0.33 mm), the difference compared with that in the 2-mm hard group (1.01±0.18 mm) was not significant (P=0.077). The CPSGs showed better COHIP (P<0.001-0.036) and pain scores (P<0.001) than did the CG on PODs 1-3. Compressive palatal stents reduce discomfort by decreasing pain and alleviating swelling. Although a stent is effective regardless of its thickness and material, 2-mm hard stents maximized such positive effects with minimal discomfort

    Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli

    Get PDF
    Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process
    • …
    corecore