1,282 research outputs found

    Impurity-Driven Metal-Insulator Transitions in Holography

    Full text link
    In this work, we study Metal-Insulator transition in a holographic model containing an interaction between the order parameter and charge-carrier density. It turns out that the impurity density of this model can drive the phase transition whose ordered phase corresponds to the insulating phase. The temperature behavior of DC conductivity distinguishes the insulating phase from the metal phase. We confirm this behavior by a numerical method and an analytic calculation. As a byproduct, we show the existence of a `quantum phase transition' supported by the Breitenlohner-Freedman bound argument.Comment: 22 pages, 21 figure

    Quantitative Screening of Cervical Cancers for Low-Resource Settings: Pilot Study of Smartphone-Based Endoscopic Visual Inspection After Acetic Acid Using Machine Learning Techniques

    Get PDF
    Background: Approximately 90% of global cervical cancer (CC) is mostly found in low- and middle-income countries. In most cases, CC can be detected early through routine screening programs, including a cytology-based test. However, it is logistically difficult to offer this program in low-resource settings due to limited resources and infrastructure, and few trained experts. A visual inspection following the application of acetic acid (VIA) has been widely promoted and is routinely recommended as a viable form of CC screening in resource-constrained countries. Digital images of the cervix have been acquired during VIA procedure with better quality assurance and visualization, leading to higher diagnostic accuracy and reduction of the variability of detection rate. However, a colposcope is bulky, expensive, electricity-dependent, and needs routine maintenance, and to confirm the grade of abnormality through its images, a specialist must be present. Recently, smartphone-based imaging systems have made a significant impact on the practice of medicine by offering a cost-effective, rapid, and noninvasive method of evaluation. Furthermore, computer-aided analyses, including image processing-based methods and machine learning techniques, have also shown great potential for a high impact on medicinal evaluations

    Spin Hall torque magnetometry of Dzyaloshinskii domain walls

    Get PDF
    Current-induced domain wall motion in the presence of the Dzyaloshinskii-Moriya interaction (DMI) is experimentally and theoretically investigated in heavy-metal/ferromagnet bilayers. The angular dependence of the current-induced torque and the magnetization structure of Dzyaloshinskii domain walls are described and quantified simultaneously in the presence of in-plane fields. We show that the DMI strength depends strongly on the heavy metal, varying by a factor of 20 between Ta and Pa, and that strong DMI leads to wall distortions not seen in conventional materials. These findings provide essential insights for understanding and exploiting chiral magnetism for emerging spintronics applications

    Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts

    Get PDF
    This study developed a method to boost the expression of recombinant proteins in a cell-free protein synthesis system without leaving additional amino acid residues. It was found that the nucleotide sequences of the signal peptides serve as an efficient downstream box to stimulate protein synthesis when they were fused upstream of the target genes. The extent of stimulation was critically affected by the identity of the second codons of the signal sequences. Moreover, the yield of the synthesized protein was enhanced by as much as 10 times in the presence of an optimal second codon. The signal peptides were in situ cleaved and the target proteins were produced in their native sizes by carrying out the cell-free synthesis reactions in the presence of Triton X-100, most likely through the activation of signal peptidase in the S30 extract. The amplification of the template DNA and the addition of the signal sequences were accomplished by PCR. Hence, elevated levels of recombinant proteins were generated within several hours

    Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration.

    Get PDF
    Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration

    Retrospective Analysis of Peripheral Blood Stem Cell Transplantation for the Treatment of High-Risk Neuroblastoma

    Get PDF
    Disease relapse after autologous peripheral blood stem cell transplantation (APBSCT) is the main cause of treatment failure in high-risk neuroblastoma (NBL). To reduce relapse, various efforts have been made such as CD34+ selection and double APBSCT. Here the authors reviewed the clinical features and outcomes of high-risk NBL patients and analyzed their survival. The medical records of 36 patients with stage III or IV NBL who underwent APBSCT at Seoul National University Children's Hospital between May 1996 and May 2004 were reviewed. Total 46 APBSCTs were performed in 36 patients. Disease free survival (DFS) and overall survival of all patients were 47.7% and 68.8%, respectively. The patients were allocated to three groups according to the APBSCT type. The DFS of CD34+ non-selected single APBSCT patients (N=13), CD34+ selected single APBSCT patients (N=14), and CD34+ selected double APBSCT patients (N=9) were 55.6%, 40.6%, and 50.0%, respectively, which were not significantly different. Thus the survival was not found to be affected by CD34+ selection or transplantation number. To improve long-term survival, various efforts should be made such as chemotherapy dose intensification, more effective tumor purging, and control of minimal residual disease via the use of differentiating and immune-modulating agents

    Successful mobilization using a combination of plerixafor and G-CSF in pediatric patients who failed previous chemomobilization with G-CSF alone and possible complications of the treatment

    Get PDF
    Peripheral blood stem cell (PBSC) mobilization, which uses plerixafor (AMD 3100), a newly developed specific inhibitor of the CXCR4 receptor, in combination with granulocyte-colony stimulating factor(G-CSF), has been shown to enhance the stem cell mobilization in adult patients, but pediatric data are scarce. We documented our experience with this drug in 6 Korean pediatric patients who had failed in chemomobilization, using G-CSF, alone. All patients were mobilized CD34+ cells (median, 11.08 × 106/kg: range, 6.34-28.97 × 106/kg) successfully within 2 to 3 cycles of apheresis, without complications. A total of 7 autologous transplantations were performed, including 1 tandem transplantation. However, 2 patients with brain tumors showed severe pulmonary complications, including spontaneous pneumomediastinum. This is the first study of PBSC mobilization with plerixafor in Asian pediatric patients. Furthermore our study suggests that mobilization with plerixafor may be effective in Korean pediatric patients, who have previously been heavily treated and have failed PBSC mobilization with classical chemomobilization, using G-CSF. However, further studies are needed to examine the possible complications of autologous transplantation, using a mobilized plerixafor product in children

    Heterologous gene expression using self-assembled supra-molecules with high affinity for HSP70 chaperone

    Get PDF
    Contrary to the results of direct expression, various human proteins (ferritin light-chain, epithermal growth factor, interleukin-2, prepro-ghrelin, deletion mutants of glutamate decarboxylase and arginine deiminase, and mini-proinsulin) were all soluble in Escherichia coli cytoplasm when expressed with the N-terminus fusion of ferritin heavy-chain (FTN-H). Through systematic investigations, we have found that a specific peptide motif within FTN-H has a high affinity to HSP70 chaperone DnaK, and that the peptide motif was composed of a hydrophobic core of three residues (Ile, Phe and Leu) and two flanking regions enriched with polar residues (Gly, Gln and Arg). It was also observed that all the recombinant proteins expressed with the fusion of FTN-H formed spherical nanoparticles with diameters of 10–15 nm, as confirmed by the transmission electron microscopy image. The protein nanoparticles are non-covalently cross-linked supra-molecules formed by the self-assembly function of FTN-H. Upon the formation of the supra-molecule, its size is likely to be limited by the assembly properties of FTN-H, thereby keeping the self-assembled particles soluble. This study reports on the dual function of FTN-H for fusion expression and solubility enhancement of heterologous proteins: (i) high-affinity interaction with DnaK and (ii) formation of self-assembled supra-molecules with limited and constant sizes, thereby avoiding the undesirable formation of insoluble macro-aggregates of heterologous proteins
    corecore