1,494 research outputs found

    Collaboration Management System between the Device based on Machine Socialization

    Get PDF
    The basis of IoT is in the interconnection and communication between different devices to achieve common goals through internet. These devices are interconnected through a network which enables communication within these devices without any direct human intervention. But with such great potential, this technology reached a road-block due to incompatibility within various manufacturers of the same type of device and proprietary standards. I started this project with this problem in mind and I have created a brand and platform independent machine socialization device manager system. In this paper, to overcome the above mentioned problem, I have utilized micro controllers to connect to various existing device to solve the problem and propose a device to device communication with collaboration management. This technology is not restricted to usage in only the new network module enabled smart devices but also this can be used to operate the existing old (not smart) home appliances. Machine socialization was made possible with the use of XML, (an internet standard schema language) which we have used to gather device, task and relationship information of all the devices to show schema information

    Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.

    Get PDF
    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K(+) channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K(+) channels in the electrogenic transport of human ES epithelium. The identified K(+) channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K(+) transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid

    Actin Cytoskeleton and Golgi Involvement in Barley stripe mosaic virus Movement and Cell Wall Localization of Triple Gene Block Proteins.

    Get PDF
    Barley stripe mosaic virus (BSMV) induces massive actin filament thickening at the infection front of infected Nicotiana benthamiana leaves. To determine the mechanisms leading to actin remodeling, fluorescent protein fusions of the BSMV triple gene block (TGB) proteins were coexpressed in cells with the actin marker DsRed: Talin. TGB ectopic expression experiments revealed that TGB3 is a major elicitor of filament thickening, that TGB2 resulted in formation of intermediate DsRed:Talin filaments, and that TGB1 alone had no obvious effects on actin filament structure. Latrunculin B (LatB) treatments retarded BSMV cell-to-cell movement, disrupted actin filament organization, and dramatically decreased the proportion of paired TGB3 foci appearing at the cell wall (CW). BSMV infection of transgenic plants tagged with GFP-KDEL exhibited membrane proliferation and vesicle formation that were especially evident around the nucleus. Similar membrane proliferation occurred in plants expressing TGB2 and/or TGB3, and DsRed: Talin fluorescence in these plants colocalized with the ER vesicles. TGB3 also associated with the Golgi apparatus and overlapped with cortical vesicles appearing at the cell periphery. Brefeldin A treatments disrupted Golgi and also altered vesicles at the CW, but failed to interfere with TGB CW localization. Our results indicate that actin cytoskeleton interactions are important in BSMV cell-to-cell movement and for CW localization of TGB3

    Panoptic Segmentation on Panoramic Radiographs: Deep Learning-Based Segmentation of Various Structures Including Maxillary Sinus and Mandibular Canal

    Get PDF
    Panoramic radiographs, also known as orthopantomograms, are routinely used in most dental clinics. However, it has been difficult to develop an automated method that detects the various structures present in these radiographs. One of the main reasons for this is that structures of various sizes and shapes are collectively shown in the image. In order to solve this problem, the recently proposed concept of panoptic segmentation, which integrates instance segmentation and semantic segmentation, was applied to panoramic radiographs. A state-of-the-art deep neural network model designed for panoptic segmentation was trained to segment the maxillary sinus, maxilla, mandible, mandibular canal, normal teeth, treated teeth, and dental implants on panoramic radiographs. Unlike conventional semantic segmentation, each object in the tooth and implant classes was individually classified. For evaluation, the panoptic quality, segmentation quality, recognition quality, intersection over union (IoU), and instance-level IoU were calculated. The evaluation and visualization results showed that the deep learning-based artificial intelligence model can perform panoptic segmentation of images, including those of the maxillary sinus and mandibular canal, on panoramic radiographs. This automatic machine learning method might assist dental practitioners to set up treatment plans and diagnose oral and maxillofacial diseases.Y

    Effects of Berberine and Hwangryunhaedok-Tang on Oral Bioavailability and Pharmacokinetics of Ciprofloxacin in Rats

    Get PDF
    Hwangryunhaedok-Tang (HR) and berberine-containing single herbs are used to treat bacterial infection and inflammatory diseases in eastern Asia. The combination of berberine-containing herbal medicines and ciprofloxacin can be an excellent antibacterial chemotherapy against multidrug resistance bacteria. To evaluate the pretreatment effect of berberine and HR, vehicle, berberine (25 and 50 mg/kg/day), and HR (1.4 g/kg/day) were daily administered to rats for five consecutive days. On day 6, ciprofloxacin was administered (10 mg/kg, i.v. and 20 mg/kg, p.o.) to rats. To assess cotreatment effect of berberine and ciprofloxacin, berberine (50 mg/kg) and ciprofloxacin (20 mg/kg) were coadministered by single oral gavage. Pharmacokinetic data were estimated by noncompartmental model. Compared with ciprofloxacin alone (control group), coadministration of berberine (50 mg/kg) and ciprofloxacin significantly decreased Cmax of ciprofloxacin (P<0.05). In addition, the pretreatment of berberine (50 mg/kg/day) and HR (1.4 g/kg/day) significantly decreased Cmax and AUC0→∞, compared with control group (P<0.05). The oral bioavailability of ciprofloxacin was reduced by cotreatment of berberine and pretreatment of berberine and HR. Our results suggest that the expression of P-glycoprotein and organic anion and/or organic cation transporters (OAT/OCT) could take a role in reduced oral bioavailability of ciprofloxacin by berberine and HR

    Preparation of polylactide-co-glycolide nanoparticles incorporating celecoxib and their antitumor activity against brain tumor cells

    Get PDF
    Tae-Ho Kim1*, Young-Il Jeong2*, Shu-Guang Jin2, Jian Pei2, Tae-Young Jung1, Kyung-Sub Moon1, In-Young Kim1, Sam-Suk Kang1, Shin Jung1,21Department of Neurosurgery, 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Science, Chonnam National University Hwasun Hospital and Medical School, Gwangju, Republic of Korea *These authors contributed equally to this work. Background: Celecoxib, a cyclo-oxygenase (COX)-2 inhibitor, has been reported to mediate growth inhibitory effects and to induce apoptosis in various cancer cell lines. In this study, we examined the potential effects of celecoxib on glioma cell proliferation, migration, and inhibition of COX-2 expression in vitro. Methods: Celecoxib was incorporated into poly DL-lactide-co-glycolide (PLGA) nanoparticles for antitumor drug delivery. Results: PLGA nanoparticles incorporating celecoxib had spherical shapes and their particle sizes were in the range of 50&amp;ndash;200 nm. Drug-loading efficiency was not significantly changed according to the solvent used, except for acetone. Celecoxib was released from the PLGA nanoparticles for more than 2 days, and the higher the drug content, the longer the duration of drug release. PLGA nanoparticles incorporating celecoxib showed cytotoxicity against U87MG tumor cells similar to that of celecoxib administered alone. Furthermore, celecoxib did not affect the degree of migration of U87MG cells. PLGA nanoparticles incorporating celecoxib showed dose-dependent cytotoxicity similar to that of celecoxib alone in C6 rat glioma cells. Western blot assay of the C6 cells showed that neither celecoxib alone nor PLGA nanoparticles incorporating celecoxib affected COX-2 expression. Conclusion: PLGA nanoparticles incorporating celecoxib had antitumor activity similar to that of celecoxib alone, even though these particles did not affect the degree of migration or COX-2 expression in the tumor cells. Keywords: celecoxib, cyclo-oxygenase-2, PLGA nanoparticles, glioma, antitumor activit

    Impact of vancomycin-induced changes in the intestinal microbiota on the pharmacokinetics of simvastatin

    Get PDF
    The pharmacokinetic (PK) properties of drugs are affected in several ways by interactions with microbiota. The aim of this study was to investigate the effects of oral vancomycin on the gut microbiota and, consequently, on the PKs of simvastatin. An open-label, single arm, sequential crossover study was conducted in six healthy Korean male subjects. After 6 days on a control diet, simvastatin 40 mg was orally administered to the subjects before and after 1 week of oral vancomycin treatment. Blood samples for PK analysis and fecal samples for metagenomic and metabolomic analyses were collected. After vancomycin treatment, the richness of microbiota considerably decreased, and the composition was altered. In particular, the relative abundance of Bacteroidetes decreased, whereas that of proteobacteria increased. In addition, changes in fecal metabolites, including D-glucuronic acid, were observed. However, systemic exposure of simvastatin was not changed whereas that of hydroxysimvastatin showed a tendency to increase. The relationship between the change of PKs of simvastatin and the change of gut microbiota and fecal metabolites were not clearly observed
    corecore