417 research outputs found
Natural Surveillance for Crime and Traffic Accidents: Simulating Improvements of Street Lighting in an Older Community
This study aimed to plan an alternative for community street lighting in an older community by simulating illuminance improvements. We applied the natural surveillance principle of crime prevention through environmental design to an older community in Busan Metropolitan City in South Korea. We conducted four field investigations to identify lighting sources and measure their illuminance and heights. Using the Relux Pro program, the gaps in lighting were identified and alternative plans for improvement for night lighting were simulated. Narrow alleys and houses were sources of light disruption and lighting blind spots. We determined the location and type of lighting within the community and considered the continuity necessary to meet natural surveillance standards in alternative settings. We considered visibility, facial recognition, the risk of traffic accidents, and other variables (i.e., lamp type). Our results confirmed that the community’s average horizontal illuminance met the requirement of the Korean Agency for Technology and Standards and the minimal illuminance criterion of the International Commission on Illumination in all community lighting spaces - which was improved by about 2.2% to 85.7% compared to the previous situation. The results of this study are meaningful in that they present an effective planning support tool using simulation methods to establish community street lighting alternatives and determine their suitability
Solution structures of RseA and its complex with RseB
Conformational changes of RseA and RseB were observed by circular dichroism and small-angle X-ray scattering upon the formation of their complex
Base extrusion is found at helical junctions between right- and left-handed forms of DNA and RNA
Base extrusion is a major structural feature at the junction between B- and Z-DNA (the B–Z junction) where a base pair is broken, and the two bases are extruded from the double helix. Despite the demonstration of base extrusion at the B–Z junction, it is not clear whether a similar base extrusion occurs at other types of junctions involving the left-handed Z conformation. Here, we investigate structural changes of bases at three Z-form junctions: DNA B–Z and Z–Z and RNA A–Z junctions. By monitoring fluorescently labeled duplex nucleic acids using 2-aminopurines at various positions relative to the junction point, we show that base extrusion occurs not only at the DNA B–Z junction, but also at the RNA A–Z and DNA Z–Z junctions. Our data suggest that base extrusion is a general feature of Z-form nucleic-acid junctions.Korean Science and Engineering Foundation (grant NRL-2006-02287)Korea (South). Ministry of Science and Technology (21C Frontier Functional Proteomics Program FPR08B2-270)Korean Science and Engineering Foundation (Ubiquitome Research Program M105 33010001-05N3301-00100)Korea Research Foundation (MOEHRD, Basic Research Promotion Fund; KRF-2005-070-C00078
Characterization of DNA-binding activity of Zα domains from poxviruses and the importance of the β-wing regions in converting B-DNA to Z-DNA
The E3L gene is essential for pathogenesis in vaccinia virus. The E3L gene product consists of an N-terminal Zα domain and a C-terminal double-stranded RNA (dsRNA) binding domain; the left-handed Z-DNA-binding activity of the Zα domain of E3L is required for viral pathogenicity in mice. E3L is highly conserved among poxviruses, including the smallpox virus, and it is likely that the orthologous Zα domains play similar roles. To better understand the biological function of E3L proteins, we have investigated the Z-DNA-binding behavior of five representative Zα domains from poxviruses. Using surface plasmon resonance (SPR), we have demonstrated that these viral Zα domains bind Z-DNA tightly. Ability of Zα[subscript E3L] converting B-DNA to Z-DNA was measured by circular dichroism (CD). The extents to which these Zαs can stabilize Z-DNA vary considerably. Mutational studies demonstrate that residues in the loop of the β-wing play an important role in this stabilization. Notably the Zα domain of vaccinia E3L acquires ability to convert B-DNA to Z-DNA by mutating amino acid residues in this region. Differences in the host cells of the various poxviruses may require different abilities to stabilize Z-DNA; this may be reflected in the observed differences in behavior in these Zα proteins.Korean Science and Engineering Foundation (National Research Laboratory Program (NRL-2006-02287))Korean Science and Engineering Foundation (Ubiquitome Research Program (M10533010002-06N3301-00210))Korean Science and Engineering Foundation (21C Frontier Functional Proteomics Program (FPR06B2-120))National Institutes of Health (U.S.)Ellison Medical FoundationKorea (South). Ministry of Science and Technology (National Laboratory program (NRL-2006-02287)
Targeting Mannitol Metabolism as an Alternative Antimicrobial Strategy Based on the Structure-Function Study of Mannitol-1-Phosphate Dehydrogenase in Staphylococcus aureus
Mannitol-1-phosphate dehydrogenase (M1PDH) is a key enzyme in Staphylococcus aureus mannitol metabolism, but its roles in pathophysiological settings have not been established. We performed comprehensive structure-function analysis of M1PDH from S. aureus USA300, a strain of community-associated methicillin-resistant S. aureus, to evaluate its roles in cell viability and virulence under pathophysiological conditions. On the basis of our results, we propose M1PDH as a potential antibacterial target. In vitro cell viability assessment of ΔmtlD knockout and complemented strains confirmed that M1PDH is essential to endure pH, high-salt, and oxidative stress and thus that M1PDH is required for preventing osmotic burst by regulating pressure potential imposed by mannitol. The mouse infection model also verified that M1PDH is essential for bacterial survival during infection. To further support the use of M1PDH as an antibacterial target, we identified dihydrocelastrol (DHCL) as a competitive inhibitor of S. aureus M1PDH (SaM1PDH) and confirmed that DHCL effectively reduces bacterial cell viability during host infection. To explain physiological functions of SaM1PDH at the atomic level, the crystal structure of SaM1PDH was determined at 1.7-Å resolution. Structure-based mutation analyses and DHCL molecular docking to the SaM1PDH active site followed by functional assay identified key residues in the active site and provided the action mechanism of DHCL. Collectively, we propose SaM1PDH as a target for antibiotic development based on its physiological roles with the goals of expanding the repertory of antibiotic targets to fight antimicrobial resistance and providing essential knowledge for developing potent inhibitors of SaM1PDH based on structure-function studies.IMPORTANCE Due to the shortage of effective antibiotics against drug-resistant Staphylococcus aureus, new targets are urgently required to develop next-generation antibiotics. We investigated mannitol-1-phosphate dehydrogenase of S. aureus USA300 (SaM1PDH), a key enzyme regulating intracellular mannitol levels, and explored the possibility of using SaM1PDH as a target for developing antibiotic. Since mannitol is necessary for maintaining the cellular redox and osmotic potential, the homeostatic imbalance caused by treatment with a SaM1PDH inhibitor or knockout of the gene encoding SaM1PDH results in bacterial cell death through oxidative and/or mannitol-dependent cytolysis. We elucidated the molecular mechanism of SaM1PDH and the structural basis of substrate and inhibitor recognition by enzymatic and structural analyses of SaM1PDH. Our results strongly support the concept that targeting of SaM1PDH represents an alternative strategy for developing a new class of antibiotics that cause bacterial cell death not by blocking key cellular machinery but by inducing cytolysis and reducing stress tolerance through inhibition of the mannitol pathway
A Unified Compression Framework for Efficient Speech-Driven Talking-Face Generation
Virtual humans have gained considerable attention in numerous industries,
e.g., entertainment and e-commerce. As a core technology, synthesizing
photorealistic face frames from target speech and facial identity has been
actively studied with generative adversarial networks. Despite remarkable
results of modern talking-face generation models, they often entail high
computational burdens, which limit their efficient deployment. This study aims
to develop a lightweight model for speech-driven talking-face synthesis. We
build a compact generator by removing the residual blocks and reducing the
channel width from Wav2Lip, a popular talking-face generator. We also present a
knowledge distillation scheme to stably yet effectively train the
small-capacity generator without adversarial learning. We reduce the number of
parameters and MACs by 28 while retaining the performance of the
original model. Moreover, to alleviate a severe performance drop when
converting the whole generator to INT8 precision, we adopt a selective
quantization method that uses FP16 for the quantization-sensitive layers and
INT8 for the other layers. Using this mixed precision, we achieve up to a
19 speedup on edge GPUs without noticeably compromising the generation
quality.Comment: MLSys Workshop on On-Device Intelligence, 2023; Demo:
https://huggingface.co/spaces/nota-ai/compressed_wav2li
High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings
AbstractBackground: The movement of lipids between membranes is aided by lipid-transfer proteins (LTPs). Some LTPs exhibit broad specificity, transferring many classes of lipids, and are termed non-specific LTPs (ns-LTPs). Despite their apparently similar mode of action, no sequence homology exists between mammalian and plant ns-LTPs and no three-dimensional structure has been reported for any plant ns-LTP.Results We have determined the crystal structure of ns-LTP from maize seedlings by multiple isomorphous replacement and refined the structure to 1.9 å resolution. The protein comprises a single compact domain with four α-helices and a long C-terminal region. The eight conserved cysteines form four disulfide bridges (assigned as Cys4–Cys52, Cys14–Cys29, Cys30–Cys75, and Cys50–Cys89) resolving the ambiguity that remained from the chemical determination of pairings in the homologous protein from castor bean. Two of the bonds, Cys4–Cys52 and Cys50–Cys89, differ from what would have been predicted from sequence alignment with soybean hydrophobic protein. The complex between maize ns-LTP and hexadecanoate (palmitate) has also been crystallized and its structure refined to 1.8 å resolution.Conclusion The fold of maize ns-LTP places it in a new category of all-α-type structure, first described for soybean hydrophobic protein. In the absence of a bound ligand, the protein has a tunnel-like hydrophobic cavity, which is large enough to accommodate a long fatty acyl chain. In the structure of the complex with palmitate, most of the acyl chain is buried inside this hydrophobic cavity
Elevation of serum lactate dehydrogenase in patients with pectus excavatum
INTRODUCTION: Pectus excavatum is the most common congenital chest wall deformity and the depression of the anterior chest wall, which compresses the internal organs. The aim of the present study is to investigate the effects of pectus excavatum on blood laboratory findings. MATERIAL AND METHODS: From March 2011 to December 2011, 71 patients with pectus excavatum who visited Seoul Saint Mary Hospital for Nuss procedure were reviewed and analyzed. The blood samples were routinely taken at the day before surgery and pectus bar removal was usually performed in 2 to 3 years after Nuss procedure. To investigate the effects on blood laboratory findings, preoperative routine blood laboratory data and postoperative changes of abnormal laboratory data were analyzed. RESULTS: Only lactate dehydrogenase (LDH), one of 26 separate routine laboratory tests, was abnormal and significantly elevated than normal value (age <10, p = 0.008; age ≥10, p < 0.001). However, there was no significant correlation between LDH levels and severities of pectus excavatum. The symmetric subgroup had significantly higher LDH level than the asymmetric subgroup (p <0.001) and there was a significant decrease of LDH level after correction of deformity (p = 0.017). CONCLUSION: In conclusion, only LDH, one of the routine laboratory tests, was significantly elevated than normal value, which was thought to be caused by etiologies of pectus excavatum and the compression of the internal organs. Further studies on LDH including isoenzyme studies in patients with pectus excavatum will be needed, and these studies will provide a deeper and wider comprehension of pectus excavatum
Identification of an antivirulence agent targeting the master regulator of virulence genes in Staphylococcus aureus
The emergence of bactericidal antibiotic-resistant strains has increased the demand for alternative therapeutic agents, such as antivirulence agents targeting the virulence regulators of pathogens. Staphylococcus aureus exoprotein expression (sae) locus, the master regulator of virulence gene expression in multiple drug-resistant S. aureus, is a promising therapeutic target. In this study, we screened a small-molecule library using a SaeRS green fluorescent protein (GFP)-reporter that responded to transcription controlled by the sae locus. We identified the compound, N-(2-methylcyclohexyl)-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SKKUCS), as an efficient repressor of sae-regulated GFP activity. SKKUCS inhibited hemolysin production and reduced α-hemolysin-mediated cell lysis. Moreover, SKKUCS substantially reduced the expression levels of various virulence genes controlled by the master regulators, sae, and the accessory gene regulator (agr), demonstrating its potential as an antivirulence reagent targeting the key virulence regulators. Furthermore, autokinase inhibition assay and molecular docking suggest that SKKUCS inhibits the kinase activity of SaeS and potentially targets the active site of SaeS kinase, possibly inhibiting ATP binding. Next, we evaluated the efficacy and toxicity of SKKUCS in vivo using murine models of staphylococcal intraperitoneal and skin infections. Treatment with SKKUCS markedly increased animal survival and significantly decreased the bacterial burden in organs and skin lesion sizes. These findings highlight SKKUCS as a potential antivirulence drug for drug-resistant staphylococcal infections
Quantitative measurements of C-reactive protein using silicon nanowire arrays
A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS) method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM) in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed
- …