16 research outputs found

    Genetic causes and risk factors associated with phenotypes occurring in mitochondrial disorders

    No full text
    Abstract Finding the genetic causes leading to phenotypes of mitochondrial diseases is challenging because of heterogeneity of the disorders and variety of the underlying biochemical defects. In adults, many of the manifestations of mitochondrial diseases cannot be distinguished from the neurodegenerative processes associated with old age. A single mutation or mutations within the same gene can result in a broad range of disorders. Conversely, clinically similar, monogenic disorders may be caused by genes which are governing entirely different cellular pathways. This study investigated the genetic etiology underlying certain symptoms which are characteristic for mitochondrial syndromes, or mimics of the mitochondrial ones. In the first project, we presented the contribution of genetic variation in the Wolfram Syndrome 1 gene to the risk of diabetes mellitus and sensorineural hearing impairment. We also estimated the frequency of a rare pathogenic variation in WFS1. The second project detected a link between the complex phenotype of age-related hearing impairment and the WFS1 gene. Monogenic forms of ARHI are extremely rare and we succeeded in recognizing one Mendelian form of the trait. The third project confirmed the Mitofusin 2 gene causality in the outlier phenotype of Charcot-Marie-Tooth disease. The fourth project described a Finnish family with two affected siblings with adult-onset ataxia, diabetes mellitus, and hypergonadotropic hypogonadism. The found novel mutation in mtDNA, m.8561C>G, was located in the overlapping region of two mitochondrial genes and resulted in an impaired assembly and dysfunctional energy production of mitochondrial ATP synthase. This thesis expands our knowledge about complex neurological phenotypes and identifies not only some causative genes but also outlier phenotypes, which should be noted in clinical practice.Tiivistelmä Perintötekijät mitokondriaalisten ja niiden kaltaisten tautien taustalla ovat vaikeasti tunnistettavissa. Tautien kirjo on valtava, ja niihin johtavat biokemialliset syyt ovat moninaisia. Aikuisten mitokondriotaudit voivat jäädä diagnosoimatta, koska oireet voivat peittyä vanhenemiseen liittyviin neurodegeneratiivisiin prosesseihin. Sama mutaatio tai eri mutaatiot samassa geenissä voivat johtaa kliinisesti täysin erilaisiin ilmiasuihin. Toisaalta, kliinisesti samankaltaiset taudit voivat olla geneettisesti ja solubiologiallisesti kirjavia. Tässä tutkimuksessa selvitetään geneettistä etiologiaa tiettyjen mitokondriaalisille ja niiden kaltaisille taudeille tyypillisten oireiden taustalla. Ensimmäisessä osajulkaisussa tunnistetaan geneettisiä riskivariantteja Wolfram Syndrome 1 -geenissä diabeteksen ja kuulonaleneman taustalta. Lisäksi tutkimuksessa estimoidaan harvinaisen tautia aiheuttavan variaation määrää kyseisessä geenissä. Toinen projekti esittelee suomalaisen perheen, jossa myöhään alkaneen kuulonaleneman, ikäkuulon, geneettinen syy paljastuu WFS1-geenistä, jota ei aiemmin ole liitetty kyseiseen ilmiasuun. Yhden geenin aiheuttamat ikäkuulotapaukset ovat todella harvinaisia, koska ikäkuulo on monimutkainen kokonaisuus, johon ympäristötekijöillä on suuri vaikutus. Kolmas osajulkaisu kuvaa potilastapauksia, joiden ilmiasu on epätyypillinen Charcot-Marie-Toothin neuropatia. Tautigeeni on tunnettu Mitofusin 2, mutta sen aiheuttaman taudinkuvat ovat yleensä vakavampia ja varhain alkaneita. Viimeinen osajulkaisu kuvaa suomalaisen perheen, jonka kahden oireisen sisaruksen taustalta löytyy mitokondriaalisen DNA:n uusi mutaatio, joka sijaitsee kahden geenin alueella muuttaen niiden molempien lopputuotetta. Mutaation, m.8561C>G, osoitetaan vaikuttavan mitokondriaalisen ATP-syntaasin rakentumiseen ja energiatuotantoon. Tämä väitöskirja laajentaa geneettistä tietoisuutta neurologisten tautien taustalla ja esittelee uusia geneettisiä syitä ja ilmiasuja, jotka tulisi huomioida kliinisessä työssä terveydenhuollossa

    Mutation m.15923A>G in the MT-TT gene causes mild myopathy – case report of an adult-onset phenotype

    No full text
    Abstract Background: Only five patients have previously been reported to harbor mutations in the MT-TT gene encoding mitochondrial tRNA threonine. The m.15923A > G mutation has been found in three severely affected children. One of these patients died within days after birth and two had a phenotype of myoclonic epilepsy with ragged red fibers (MERRF) in early childhood. We have now found the mutation in an adult patient with mild myopathy. Case presentation: The patient is a 64-year-old Finnish man, who developed bilateral ptosis, diplopia and exercise intolerance in his fifties. Family history was unremarkable. Muscle histology showed cytochrome c-oxidase (COX) negative and ragged red fibres. The m.15923A > G mutation heteroplasmy was 33% in the skeletal muscle and 2% in buccal epithelial cells. The mutation was undetectable in the blood. Single-fibre analysis was performed and COX-negative fibres had a substantially higher heteroplasmy of 92%, than the normal fibres in which it was 43%. Conclusions: We report the fourth patient with m. 15923A > G and with a remarkably milder phenotype than the previous three patients. Our findings and recent biochemical studies suggest that the mutation m.15923A > G is a definite disease-causing mutation. Our results also suggest that heteroplasmy of the m.15923A > G mutation correlates with the severity of the phenotype. This study expands the catalog of the phenotypes caused by mutations in mtDNA

    The m.7510T>C mutation:hearing impairment and a complex neurologic phenotype

    No full text
    Abstract Objectives: Mutations in mitochondrial DNA cause a variety of clinical phenotypes ranging from a mild hearing impairment (HI) to severe encephalomyopathy. The MT-TS1 gene is a hotspot for mutations causing HI. The m.7510T>C mutation in MT-TS1 has been previously associated with non-syndromic HI in four families from different ethnic backgrounds. Materials and Methods: We describe the clinical, genetic, and histopathological findings in a Finnish family with the heteroplasmic m.7510T>C mutation in mitochondrial DNA. Results: The family proband presented with a progressive mitochondrial disease phenotype including migraine, epilepsy, mild ataxia, and cognitive impairment in addition to HI. One young adult presented with HI only. Other family members had a mild phenotype comprising ataxia and tremor in addition to HI. Mutation heteroplasmy was 90% in the blood of maternal grandmother and ≥99% in the muscle and blood of the three other family members. Muscle histology was consistent with mitochondrial myopathy in three family members. The mitochondrial haplogroup of the family was a different branch of the haplogroup H than in the previous reports of this mutation. Conclusion: Our results suggest that, in addition to sensorineural HI, the m.7510T>C mutation is associated with a spectrum of mitochondrial disease clinical features including migraine, epilepsy, cognitive impairment, ataxia, and tremor, and with evidence of mitochondrial myopathy

    NDUFA1 p.Gly32Arg variant in early-onset dementia

    No full text
    Abstract Early-onset dementia (EOD) is highly heritable. However, in many EOD cases the genetic etiology remains unknown. Mitochondrial dysfunction is associated with neurodegeneration and the complex I (CI) deficiency is the most common enzyme deficiency in diseases related to oxidative phosphorylation. The X-chromosomal NDUFA1 gene is essential for the activity of CI. Mutations in NDUFA1 are associated with mitochondrial diseases especially with Leigh syndrome. CI deficiency is also associated with neurodegenerative diseases, such as Alzheimer’s disease (AD). The aim of this study was to evaluate the role of NDUFA1 variants in EOD patients. Next-generation sequencing panel was used to screen NDUFA1 variants in a cohort of 37 EOD patients with a family history of dementia or an atypical or rapidly progressive course of disease. We identified a hemizygous p.Gly32Arg variant in two brothers with AD. Subsequent screening of the variant in a larger cohort of EOD patients (n = 279) revealed three additional variant carriers (one male and two heterozygote females), suggesting that NDUFA1 variant p.Gly32Arg may play a role in neurodegenerative dementia

    Analysis of functional variants in mitochondrial DNA of Finnish athletes

    No full text
    Abstract Background: We have previously reported on paucity of mitochondrial DNA (mtDNA) haplogroups J and K among Finnish endurance athletes. Here we aimed to further explore differences in mtDNA variants between elite endurance and sprint athletes. For this purpose, we determined the rate of functional variants and the mutational load in mtDNA of Finnish athletes (n = 141) and controls (n = 77) and determined the sequence variation in haplogroups. Results: The distribution of rare and common functional variants differed between endurance athletes, sprint athletes and the controls (p = 0.04) so that rare variants occurred at a higher frequency among endurance athletes. Furthermore, the ratio between rare and common functional variants in haplogroups J and K was 0.42 of that in the remaining haplogroups (p = 0.0005). The subjects with haplogroup J and K also showed a higher mean level of nonsynonymous mutational load attributed to common variants than subjects with the other haplogroups. Interestingly, two of the rare variants detected in the sprint athletes were the disease-causing mutations m.3243A > G in MT-TL1 and m.1555A > G in MT-RNR1. Conclusions: We propose that endurance athletes harbor an excess of rare mtDNA variants that may be beneficial for oxidative phosphorylation, while sprint athletes may tolerate deleterious mtDNA variants that have detrimental effect on oxidative phosphorylation system. Some of the nonsynonymous mutations defining haplogroup J and K may produce an uncoupling effect on oxidative phosphorylation thus favoring sprint rather than endurance performance

    Mutation analysis of the genes linked to early onset Alzheimer's disease and frontotemporal lobar degeneration

    No full text
    Abstract A lot of effort has been done to unravel the genetics underlying early-onset Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD). However, many familial early-onset dementia (EOD) cases still show an unclear genetic background. The aim of this study was to evaluate the role of the known causative mutations and possible pathogenic variants associated with AD and FTLD in a Finnish EOD cohort. The cohort consisted of 39 patients (mean age at onset 54.8 years, range 39–65) with a positive family history of dementia or an atypical or rapidly progressive course of the disease. None of the patients carried the C9orf72 hexanucleotide repeat expansion. Mutations and variants in APP, PSEN1, PSEN2, MAPT, GRN, VCP, CHMP2B, FUS, TARDBP, TREM2, TMEM106B, UBQLN2, SOD1, PRNP, UBQLN1, and BIN1 were screened by using a targeted next generation sequencing panel. Two previously reported pathogenic mutations (PSEN1 p.His163Arg and MAPT p.Arg406Trp) were identified in the cohort. Both patients had familial dementia with an atypical early onset phenotype. In addition, a heterozygous p.Arg71Trp mutation in PSEN2 with an uncertain pathogenic nature was identified in a patient with neuropathologically confirmed AD. In conclusion, targeted investigation of the known dementia-linked genes is worthwhile in patients with onset age under 55 and a positive family history, as well as in patients with atypical features

    A severe neurodegenerative disease with Lewy bodies and a mutation in the glucocerebrosidase gene

    No full text
    Abstract Several heterozygous variants of the glucocerebrosidase gene (GBA1) have been reported to increase the risk of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). GBA1-associated PD has been reported to be more severe than idiopathic PD, and more deleterious variants are associated with more severe clinical phenotypes. We report a family with a heterozygous p.Pro454Leu variant in GBA1. The variant was associated with a severe and rapidly progressive neurodegenerative disease with Lewy bodies that were clinically and pathologically diverse. Pathogenicity prediction algorithms and evolutionary analyses suggested that p.Pro454Leu is deleterious

    Case report:a novel frameshift mutation in the mitochondrial cytochrome c oxidase II gene causing mitochondrial disorder

    No full text
    Abstract Background: Mitochondrial cytochrome c oxidase 2, MT-CO2, encodes one of the three subunits, which form the catalytic core of cytochrome c oxidase (COX), complex IV. Mutations in MT-CO2 are rare and the associated phenotypes are variable including nonsyndromic and syndromic forms of mitochondrial diseases. Case presentation: We describe a 30-year-old man with cognitive decline, epilepsy, psychosis, exercise intolerance, sensorineural hearing impairment, retinitis pigmentosa, cataract and lactic acidosis. COX-deficient fibers and ragged red fibers were abundant in the muscle. Sequencing of mitochondrial DNA (mtDNA) revealed a novel frameshift mutation m.8156delG that was predicted to cause altered C-terminal amino acid sequence and to lead to truncation of the COX subunit 2. The deletion was heteroplasmic being present in 26% of the mtDNA in blood, 33% in buccal mucosa and 95% in muscle. Deletion heteroplasmy correlated with COX-deficiency in muscle histochemistry. The mother and the siblings of the proband did not harbor the deletion. Conclusions: The clinical features and muscle histology of the proband suggested a mitochondrial disorder. The m.8156delG deletion is a new addition to the short list of pathogenic mutations in the mtDNA-encoded subunits of COX. This case illustrates the importance of mtDNA sequence analysis in patients with an evident mitochondrial disorder

    Mitochondrial DNA variation in sudden cardiac death:a population-based study

    No full text
    Abstract Cardiomyopathy and cardiac conduction defects are common manifestations of mitochondrial disease. Previous studies suggest that clinically asymptomatic individuals harbouring pathogenic mitochondrial DNA (mtDNA) mutations in the cardiac muscle may have sudden cardiac death (SCD) as the first manifestation of mitochondrial disease. We investigated the contribution of pathogenic mtDNA point mutations and mtDNA haplogroups in cardiac muscle in a cohort of 280 Finnish subjects that had died from non-ischaemic SCD with the median age of death at 59 years and in 537 population controls. We did not find any common or novel pathogenic mutations, but the frequency of haplogroup H1 was higher in the SCD subjects than that in 537 population controls (odds ratio: 1.76, confidence interval 95%: 1.02–3.04). We conclude that, at the population level, pathogenic point mutations in mtDNA do not contribute to non-ischaemic SCD, but natural variation may modify the risk

    Association of mitochondrial DNA haplogroups J and K with low response in exercise training among Finnish military conscripts

    No full text
    Abstract Background: We have previously suggested that some of the mutations defining mitochondrial DNA (mtDNA) haplogroups J and K produce an uncoupling effect on oxidative phosphorylation and thus are detrimental for elite endurance performance. Here, the association between haplogroups J and K and physical performance was determined in a population-based cohort of 1036 Finnish military conscripts. Results: Following a standard-dose training period, excellence in endurance performance was less frequent among subjects with haplogroups J or K than among subjects with non-JK haplogroups (p = 0.041), and this finding was more apparent among the best-performing subjects (p < 0.001). Conclusions: These results suggest that mtDNA haplogroups are one of the genetic determinants explaining individual variability in the adaptive response to endurance training, and mtDNA haplogroups J and K are markers of low-responders in exercise training
    corecore