15 research outputs found
A modular approach to aryl-C-ribonucleosides via the allylic substitution and ring-closing metathesis sequence: a stereocontrolled synthesis of all four α-/β- andd-/l-C-nucleoside stereoisomers
Iridium(I)-catalyzed allylation of the enantiopure monoprotected copper(I) alkoxide, generated from (S)-5a, with the enantiopure allylic carbonates (R)-9a,b has been developed as the key step in a new approach to C-nucleoside analogues. The anomeric center was thus constructed via a stereocontrolled formation of the C-O rather than C-C bond with retention of configuration. The resulting bisallyl ethers 15a,b (>= 90% de and >99% cc) were converted into C-ribosides 29a,b via the Ru-catalyzed ring-closing metathesis, followed by a diastereoselective dihydroxylation catalyzed by OsO(4) or RuO(4) and deprotection. Variation of the absolute configuration of the starting segments 5a and 9a,b allowed a stereocontrolled synthesis of all four alpha/beta-D/L-combinations
A CRCD Experience: Integrating Machine Learning Concepts into Introductory Engineering and Science Programming Courses Abstract
Machine Learning has traditionally been a topic of research and instruction in computer science and computer engineering programs. Yet, due to its wide applicability in a variety of fields, its research use has expanded in other disciplines, such as electrical engineering, industrial engineering, civil engineering, and mechanical engineering. Currently, many undergraduate and first-year graduate students in the aforementioned fields do not have exposure to recent research trends in Machine Learning. This paper reports on a project in progress, funded by the Nationa
The determination of psilocin and psilocybin in hallucinogenic mushrooms by HPLC utilizing a dual reagent acidic potassium permanganate and tris(2,2´-bipyridyl)ruthenium(II) chemiluminescence detection system
This paper describes a procedure for the determination of psilocin and psilocybin in mushroom extracts using high-performance liquid chromatography with postcolumn chemiluminescence detection. A number of extraction methods for psilocin and psilocybin in hallucinogenic mushrooms were investigated, with a simple methanolic extraction being found to be most effective. Psilocin and psilocybin were extracted from a variety of hallucinogenic mushrooms using methanol. The analytes were separated on a C12 column using a (95:5% v/v) methanol:10 mM ammonium formate, pH 3.5 mobile phase with a run time of 5 min. Detection was realized through a dual reagent chemiluminescence detection system of acidic potassium permanganate and tris(2,2\u27-bipyridyl)ruthenium(II). The chemiluminescence detection system gave improved detectability when compared with UV absorption at 269 nm, with detection limits of 1.2 × 10−8 and 3.5 × 10−9 mol/L being obtained for psilocin and psilocybin, respectively. The procedure was applied to the determination of psilocin and psilocybin in three Australian species of hallucinogenic mushroom
Global potentials for the interaction between rare gases and graphene-based surfaces: An atom-bond pairwise additive representation
Global potentials for the physisorption of rare-gas atoms on graphene and graphite, amenable for a variety of dynamics simulations, are reported. An atom-bond pairwise additive form of the potential is used, where the interaction pairs, represented by proper analytical functions, are constituted by the Rg atom (Rg = He, Ne, Ar, Kr) and the C-C bonds of the graphene sheet(s). The parameters of the atom-bond pair potential, derived from the polarizability of the interacting partners, are fine-tuned, exploiting calculations of the prototypical Rg-coronene system using high-level electronic structure methods and large basis sets. The atom-graphene/graphite potential is further expanded in a Fourier series, and it is found that for an accurate representation of the interaction only a small number of corrugation terms need to be added to the laterally averaged potential. Furthermore, this corrugation part of the potential is both identical for Rg-graphene and Rg-graphite; in other words, inner layers of graphite only play a role in the laterally averaged Rg-graphite potential. For all systems, the hollow at the center of the carbon ring is the preferred adsorption site, although diffusion barriers are low. The present results compare well with previous data regarding well depths and equilibrium distances at different adsorption sites and, for graphite, the long-range dispersion coefficient C3. In addition, binding energies (eigenvalues of the laterally averaged potentials) are in a fairly good agreement with experimental determinations, providing further support for the reliability of the potentials. © 2013 American Chemical Society.The work has been funded by Spanish grants FIS2010-22064- C02-02 and CSD2009-00038. Allocation of computing time by CESGA (Spain) and the COST-CMTS Action CM1002 “Convergent Distributed Environment for Computational Spectroscopy (CODECS)” are also acknowledged. F.P. acknowledges financial support from the Italian Ministry of University and Research (MIUR) for PRIN contracts.Peer Reviewe