6 research outputs found

    A survey of robot manipulation in contact

    No full text
    Abstract In this survey, we present the current status on robots performing manipulation tasks that require varying contact with the environment, such that the robot must either implicitly or explicitly control the contact force with the environment to complete the task. Robots can perform more and more manipulation tasks that are still done by humans, and there is a growing number of publications on the topics of (1) performing tasks that always require contact and (2) mitigating uncertainty by leveraging the environment in tasks that, under perfect information, could be performed without contact. The recent trends have seen robots perform tasks earlier left for humans, such as massage, and in the classical tasks, such as peg-in-hole, there is a more efficient generalization to other similar tasks, better error tolerance, and faster planning or learning of the tasks. Thus, in this survey we cover the current stage of robots performing such tasks, starting from surveying all the different in-contact tasks robots can perform, observing how these tasks are controlled and represented, and finally presenting the learning and planning of the skills required to complete these tasks

    Imitating human search strategies for assembly

    No full text
    Abstract We present a Learning from Demonstration method for teaching robots to perform search strategies imitated from humans in scenarios where alignment tasks fail due to position uncertainty. The method utilizes human demonstrations to learn both a state invariant dynamics model and an exploration distribution that captures the search area covered by the demonstrator. We present two alternative algorithms for computing a search trajectory from the exploration distribution, one based on sampling and another based on deterministic ergodic control. We augment the search trajectory with forces learnt through the dynamics model to enable searching both in force and position domains. An impedance controller with superposed forces is used for reproducing the learnt strategy. We experimentally evaluate the method on a KUKA LWR4+ performing a 2D peg-in-hole and a 3D electricity socket task. Results show that the proposed method can, with only few human demonstrations, learn to complete the search task

    Improving dual-arm assembly by master-slave compliance

    No full text
    Abstract In this paper we show how different choices regarding compliance affect a dual-arm assembly task. In addition, we present how the compliance parameters can be learned from a human demonstration. Compliant motions can be used in assembly tasks to mitigate pose errors originating from, for example, inaccurate grasping. We present analytical background and accompanying experimental results on how to choose the center of compliance to enhance the convergence region of an alignment task. Then we present the possible ways of choosing the compliant axes for accomplishing alignment in a scenario where orientation error is present. We show that an earlier presented Learning from Demonstration method can be used to learn motion and compliance parameters of an impedance controller for both manipulators. The learning requires a human demonstration with a single teleoperated manipulator only, easing the execution of demonstration and enabling usage of manipulators at difficult locations as well. Finally, we experimentally verify our claim that having both manipulators compliant in both rotation and translation can accomplish the alignment task with less total joint motions and in shorter time than moving one manipulator only. In addition, we show that the learning method produces the parameters that achieve the best results in our experiments
    corecore