58 research outputs found

    Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    Full text link
    Long-term durability is a major obstacle limiting the widespread use of lithium ion batteries (LIBs) in heavy-duty applications and others demanding extended lifetime. As one of the root causes of degradation and failure of battery performance, the electrode failure mechanisms are still unknown. Here, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics, and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. Based on this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future LIBs from surface chemical, electrochemical, and material science perspectives.Comment: 8 pages, 5 figure

    Dynamics of Tribofilm Formation in Boundary Lubrication Investigated Using In Situ Measurements of the Friction Force and Contact Voltage.

    No full text
    The complex dynamics of tribofilm formation on boundary-lubricated steel surfaces were investigated in real time by combining in situ measurements of the temporal variation of the coefficient of friction and contact voltage. Sliding experiments were performed with various blends consisting of base oil, zinc dialkyl dithiophosphate (ZDDP) additive, and two different dispersants at an elevated oil temperature for a wide range of normal load and fixed sliding speed. The evolution of the transient and steady-state coefficient of friction, contact voltage, and critical sliding distance (time) for stable tribofilm formation were used to evaluate the tribological performance of the tribofilms. The blend composition affected the load dependence of the critical sliding distance for stable tribofilm formation. Tribofilm friction was influenced by competing effects between the additive and the dispersants. Among various formulations examined, the tribofilm with the best friction characteristics was found to be the blend consisting of base oil, a small amount of ZDDP, and a bis-succinimide dispersant treated with ethylene carbonate. The results of this study demonstrate the effectiveness of the present experimental approach to track the formation and removal of protective tribofilms under boundary lubrication conditions in real time
    • …
    corecore