27 research outputs found

    Adrenoceptor‐related decrease in serum triglycerides is independent of PPARα activation

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151956/1/febs14966.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151956/2/febs14966_am.pd

    Fatty acid-related modulations of membrane fluidity in cells: detection and implications

    Get PDF
    Metabolic homeostasis of fatty acids is complex and well-regulated in all organisms. The biosynthesis of saturated fatty acids (SFA) in mammals provides substrates for ?-oxidation and ATP production. Monounsaturated fatty acids (MUFA) are products of desaturases that introduce a methylene group in cis geometry in SFA. Polyunsaturated fatty acids (n-6 and n-3 PUFA) are products of elongation and desaturation of the essential linoleic acid and ?-linolenic acid, respectively. The liver processes dietary fatty acids and exports them in lipoproteins for distribution and storage in peripheral tissues. The three types of fatty acids are integrated in membrane phospholipids and determine their biophysical properties and functions. This study was aimed at investigating effects of fatty acids on membrane biophysical properties under varying nutritional and pathological conditions, by integrating lipidomic analysis of membrane phospholipids with functional two-photon microscopy (fTPM) of cellular membranes. This approach was applied to two case studies: first, pancreatic beta-cells, to investigate hormetic and detrimental effects of lipids. Second, red blood cells extracted from a genetic mouse model defective in lipoproteins, to understand the role of lipids in hepatic diseases and metabolic syndrome and their effect on circulating cells

    High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities

    No full text
    High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of “the more the better”, ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL

    Regulation of Endothelial Nitric Oxide Synthase and High-Density Lipoprotein Quality by Estradiol in Cardiovascular Pathology

    No full text
    Estrogens have been recognized, in the last 3 decades, as important hormones in direct and indirect modulation of vascular health. In addition to their direct benefit on cardiovascular health, the presence of esterified estrogen in the lipid core of high-density lipoprotein (HDL) particles indirectly contributes to atheroprotection by significantly improving HDL quality and functionality. Estrogens modulate their physiological activity via genomic and nongenomic mechanisms. Genomic mechanisms are thought to be mediated directly by interaction of the hormone receptor complex with the hormone response elements that regulate gene expression. Nongenomic mechanisms are thought to occur via interaction of the estrogen with membrane-bound receptors, which rapidly activate intracellular signaling without binding of the hormone receptor complex to its hormone response elements. Estradiol in particular mediates early and late endothelial nitric oxide synthase (eNOS) activation via interaction with estrogen receptors through both nongenomic and genomic mechanisms. In the vascular system, the primary endogenous source of nitric oxide (NO) generation is eNOS. Nitric oxide primarily influences blood vessel relaxation, the heart rate, and myocyte contractility. The abnormalities in expression and/or functions of eNOS lead to the development of cardiovascular diseases, both in animals and in humans. Although considerable research efforts have been dedicated to understanding the mechanisms of action of estradiol in regulating cardiac eNOS, more research is needed to fully understand the details of such mechanisms. This review focuses on recent findings from animal and human studies on the regulation of eNOS and HDL quality by estradiol in cardiovascular pathology

    Medicines for Obesity: Appraisal of Clinical Studies with Grading of Recommendations, Assessment, Development, and Evaluation Tool

    No full text
    We evaluated the quality of evidence from phase III/IV clinical trials of drugs against obesity using the principles of Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) tool. Our systematic review evaluates the quality of clinical evidence from existing clinical trials and not the pharmacological efficacy of anti-obesity therapies. A literature search using select keywords in separate was performed in PubMed and ClinicalTrials.gov databases for phase III/IV clinical trials during the last ten years. Our findings indicate that the quality of existing clinical evidence from anti-obesity trials generally ranges from low to moderate. Most trials suffered from publication bias. Less frequently, trials suffered from the risk of bias mainly due to lack of blindness in the treatment. Our work indicates that additional higher-quality clinical trials are needed to gain more confidence in the estimate of the effect of currently used anti-obesity medicines, to allow more informed clinical decisions, thus reducing the risk of implementing potentially ineffective or even harmful therapeutic strategies
    corecore