52 research outputs found

    Chimeric Isoprenoid Synthases and Uses Thereof

    Get PDF
    Provided is a chimeric isoprenoid synthase polypeptide including a first domain from a first isoprenoid synthase joined to a second domain from a second, heterologous, isoprenoid synthase, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced in the absence of the second domain of the second, heterologous, isoprenoid synthase. Also provided is a chimeric isoprenoid synthase polypeptide including an asymmetrically positioned heterologous domain, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced when the domain is positioned at its naturally-occurring site in the isoprenoid synthase polypeptide

    Chemical Isoprenoid Synthases and Uses Thereof

    Get PDF
    Disclosed is a chimeric isoprenoid synthase polypeptide including a first domain from a first isoprenoid synthase joined to a second domain from a second, heterologous isoprenoid synthase, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced in the absence of the second domain of the second, heterologous isoprenoid synthase. Also disclosed is a chimeric isoprenoid synthase polypeptide including an asymmetrically positioned homologous domain, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced when the domain is positioned at its naturally-occurring site in the isoprenoid synthase polypeptide

    Plant Cells and Plants Expressing Chemeric Isoprenoid Synthases

    Get PDF
    The invention features plant cells and plants that include a nucleic acid molecule encoding a chimeric isoprenoid synthase polypeptide including an asymmetrically positioned homologous domain. The chimeric isoprenoid synthases of the invention catalyze the production of isoprenoid reaction products that are not produced when the asymmetrically positioned homologous domain is positioned at its naturally-occurring site in an isoprenoid synthase polypeptide

    Chimeric Isoprenoid Synthases and Uses Thereof

    Get PDF
    Disclosed is a chimeric isoprenoid synthase polypeptide including a first domain from a first isoprenoid synthase joined to a second domain from a second, heterologous isoprenoid synthase, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced in the absence of the second domain of the second, heterologous isoprenoid synthase. Also disclosed is a chimeric isoprenoid synthase polypeptide including an asymmetrically positioned homologous domain, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced when the domain is positioned at its naturally-occurring site in the isoprenoid synthase polypeptide

    Chimeric Isoprenoid Synthases and Uses Thereof

    Get PDF
    Disclosed is a chimeric isoprenoid synthase polypeptide including a first domain from a first isoprenoid synthase joined to a second domain from a second, heterologous isoprenoid synthase, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced in the absence of the second domain of the second, heterologous isoprenoid synthase. Also disclosed is a chimeric isoprenoid synthase polypeptide including an assymetrically positioned homologous domain, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced when the domain is positioned at its naturally-occurring site in the isoprenoid synthase polypeptide

    Chimeric Isoprenoid Synthases and Uses Thereof

    Get PDF
    Provided is a chimeric isoprenoid synthase polypeptide including a first domain from a first isoprenoid synthase joined to a second domain from a second, heterologous, isoprenoid synthase, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced in the absence of the second domain of the second, heterologous, isoprenoid synthase. Also provided is a chimeric isoprenoid synthase polypeptide including an asymmetrically positioned heterologous domain, whereby the chimeric isoprenoid synthase is capable of catalyzing the production of isoprenoid reaction products that are not produced when the domain is positioned at its naturally-occurring site in the isoprenoid synthase polypeptide

    Human Naa50 Shows Serotonin <i>N</i>-Acetyltransferase Activity, and Its Overexpression Enhances Melatonin Biosynthesis, Resulting in Osmotic Stress Tolerance in Rice

    No full text
    A new clade of serotonin N-acetyltransferase (SNAT), the penultimate enzyme in the melatonin biosynthetic pathway, has been reported in the archaeon Thermoplasma volcanium. The closest homolog of archaea SNAT in human was an N-alpha-acetyltransferase50 (Naa50). To determine whether human Naa50 (hNaa50) shows SNAT enzyme activity, we chemically synthesized and expressed the hNaa50 gene in Escherichia coli, followed by Ni2+ affinity purification. Purified recombinant hNaa50 showed SNAT activity (Km and Vmax values of 986 μM and 1800 pmol/min/mg protein, respectively). To assess its in vivo function, hNaa50 was overexpressed in rice (hNaa50-OE). The transgenic rice plants produced more melatonin than nontransgenic wild-type rice, indicating that hNaa50 is functionally coupled with melatonin biosynthesis. Due to its overproduction of melatonin, hNaa50-OE had a higher tolerance against osmotic stress than the wild type. Enhanced expression of the chaperone genes BIP1 and CNX in hNaa50-OE plants was responsible for the increased tolerance. It is concluded that hNaa50 harbors serotonin N-acetyltransferase enzyme activity in addition to its initial N-alpha-acetyltransferase, suggesting the bifunctionality of the hNaa50 enzyme toward serotonin and protein substrates. Consequently, ectopic overexpression of hNaa50 in rice enhanced melatonin synthesis, indicating that hNaa50 is in fact involved in melatonin biosynthesis

    Simultaneous Suppression of Two Distinct Serotonin N-Acetyltransferase Isogenes by RNA Interference Leads to Severe Decreases in Melatonin and Accelerated Seed Deterioration in Rice

    No full text
    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthetic pathway, in which serotonin is converted into N-acetylserotonin (NAS) in plants. To date, two SNAT isogenes with low amino acid sequence homologies have been identified. Their single suppression in rice has been reported, but their double suppression in rice has not yet been attempted. Here, we generated double-suppression transgenic rice (snat1+2) using the RNA interference technique. The snat1+2 exhibited retarded seedling growths in conjunction with severe decreases in melatonin compared to wild-types and single-suppression rice plants (snat1 or snat2). The laminar angle was decreased in the snat1+2 rice compared to that of the wild-types and snat1, but was comparable to that of snat2. The reduced germination speed in the snat1+2 was comparable to that of snat2. Seed-aging testing revealed that snat1 was the most severely deteriorated, followed by snat1+2 and snat2, suggesting that melatonin is positively involved in seed longevity

    2-Hydroxymelatonin Promotes Seed Germination by Increasing Reactive Oxygen Species Production and Gibberellin Synthesis in <i>Arabidopsis thaliana</i>

    No full text
    It was recently reported that 2-hydroxymelatonin (2-OHM) is responsible for inducing reactive oxygen species (ROS) in plants. ROS are crucial molecules that promote germination through interaction with hormones such as gibberellic acid (GA). In this study, to confirm the pro-oxidant role of 2-OHM, we investigated its effect on seed germination in Arabidopsis thaliana (L.) Heynh. Columbia-0. We found that 2-OHM treatment stimulated seed germination by 90% and 330% in non-dormant and dormant seeds, respectively, whereas melatonin marginally increased germination (~13%) in both seed types compared to untreated control seeds. The germination promotion effects of exogenous 2-OHM treatment were due to increased ROS production followed by the induction of GA synthesis and expression of responsive genes. Accordingly, melatonin 2-hydroxylase (M2H), the gene responsible for 2-OHM synthesis, was strictly expressed only during the germination process. Further molecular genetic analyses using m2h knockout mutant and M2H overexpression clearly supported an increase in ROS triggered by 2-OHM, followed by increased expression of GA-related genes, which shortened the time to germination. Notably, 2-OHM application to m2h knockout mutant seeds fully recovered germination to levels comparable to that of the wild type, whereas melatonin treatment failed to increase germination. Together, these results indicate that 2-OHM is a pivotal molecule that triggers increased ROS production during seed germination, thereby enhancing germination via the GA pathway in Arabidopsis thaliana

    2-Hydroxymelatonin Promotes Seed Germination by Increasing Reactive Oxygen Species Production and Gibberellin Synthesis in Arabidopsis thaliana

    No full text
    It was recently reported that 2-hydroxymelatonin (2-OHM) is responsible for inducing reactive oxygen species (ROS) in plants. ROS are crucial molecules that promote germination through interaction with hormones such as gibberellic acid (GA). In this study, to confirm the pro-oxidant role of 2-OHM, we investigated its effect on seed germination in Arabidopsis thaliana (L.) Heynh. Columbia-0. We found that 2-OHM treatment stimulated seed germination by 90% and 330% in non-dormant and dormant seeds, respectively, whereas melatonin marginally increased germination (~13%) in both seed types compared to untreated control seeds. The germination promotion effects of exogenous 2-OHM treatment were due to increased ROS production followed by the induction of GA synthesis and expression of responsive genes. Accordingly, melatonin 2-hydroxylase (M2H), the gene responsible for 2-OHM synthesis, was strictly expressed only during the germination process. Further molecular genetic analyses using m2h knockout mutant and M2H overexpression clearly supported an increase in ROS triggered by 2-OHM, followed by increased expression of GA-related genes, which shortened the time to germination. Notably, 2-OHM application to m2h knockout mutant seeds fully recovered germination to levels comparable to that of the wild type, whereas melatonin treatment failed to increase germination. Together, these results indicate that 2-OHM is a pivotal molecule that triggers increased ROS production during seed germination, thereby enhancing germination via the GA pathway in Arabidopsis thaliana
    corecore