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CHIMERIC ISOPRENOID SYNTHASES AND 
USES THEREOF 

This application is a continuation of US. application Ser. 
No. 09/576,057 ?led May 23, 2000, now abandoned which is 
a continuation of US. application Ser. No. 09/514,513, ?led 
Feb. 28, 2000, which is a divisional of US. application Ser. 
No. 09/134,699, ?ledAug. 14, 1998, now US. Pat No. 6,072, 
045 which is a continuation of US. application Ser. No. 
08/631,341, ?led Apr. 12, 1996 (now US. Pat. No. 5,824, 
774). 

STATEMENT AS TO FEDERALLY SPONSORED 
RESEARCH 

This invention was made in part with Government funding, 
and the Government therefore has certain rights in the inven 
tion. 

BACKGROUND OF THE INVENTION 

This invention relates to modi?ed isoprenoid synthase 
enzymes, their encoding genes, and uses thereof. 

The term isoprenoid is used to refer to a family of com 
pounds derived from the isoprene building block. In particu 
lar, plant isoprenoids comprise a structurally diverse group of 
compounds that can be divided into classes of primary and 
secondary metabolites (FIG. 1). Isoprenoids that are primary 
metabolites include sterols, carotenoids, growth regulators, 
and the polyprenol substituents of dolichols, quinones, and 
proteins. These compounds are essential for membrane integ 
rity, photoprotection, orchestration of developmental pro 
grams, and anchoring essential biochemical functions to spe 
ci?c membrane systems, respectively. Isoprenoids that are 
classi?ed as secondary metabolites include monoterpenes, 
sesquiterpenes, and diterpenes. These compounds are said to 
mediate important interactions between plants and their envi 
ronment. For example, speci?c terpenoids have been corre 
lated with plant-plant (Stevens, In: Isopento ids in Plants, Nes, 
W. D. Fuller, G., and Tsai, L.-S., eds., Marcel Dekker, New 
York, pp. 65-80, 1984), plant-insect (Gibson and Pickett, 
Nature 302:608, 1983), and plant-pathogen interactions 
(Stoessl et al., Phytochemistry 15:855, 1976). 
The common denominator for this diverse array of com 

pounds is their universal ?ve-carbon building block, iso 
prene. The “biogenic isoprene rule” was employed to ratio 
nalize the biosynthetic origins of all terpenoids derived from 
isoprene (Ruzicka, Experientia 10:357, 1953). The polymer 
ization of two diphosphorylated isoprene building blocks 
(e.g., IPP and dimethylallyl) generates geranyl diphosphate 
(GPP), a linear C10 intermediate that can be converted to 
cyclic or linear end-products representing the monoterpenes, 
or used in another round of polymerization. The addition of a 
third isoprene unit to GPP generates farnesyl diphosphate 
(FPP), which can also be converted to cyclic or linear prod 
ucts representing the sesquiterpene class. Continuing the 
polymerization and chemical differentiation cycle leads to 
the production of other classes of terpenoids named accord 
ing to the number of isoprene building blocks leading to their 
biosynthesis, for example, the addition of a third IPP to FPP 
generates geranylgeranyl diphosphate (GGPP). 

These polymerization reactions are catalyzed by prenyl 
transferases that direct the attack of a carbocation (an electron 
de?cient carbon atom resulting from the loss of the diphos 
phate moiety of one substrate) to an electron-rich carbon 
atom of the double bond on the IPP molecule (FIG. 2). The 
electrophilic nature of these reactions is said to be unusual 
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2 
relative to more general nucleophilic condensation reactions, 
but this appears to be a common reaction among isoprenoid 
bio synthetic enzymes and especially those enzymes involved 
in catalyzing the cyclization of various isoprenoid intermedi 
ates (Gershenzon and Croteau, In: Lipid Metabolism in 
Plants, Moore, T. S., ed., CRC Press, Boca Raton, Fla., pp. 
340-388). The enzymes responsible for the cyclization of 
GPP, FPP, and GGPP are referred to as monoterpene, sesquit 
erpene, and diterpene synthases or synthases, and represent 
reactions committing carbon from the general isoprenoid 
pathway to end products in the monoterpene, sesquiterpene, 
and diterpene classes, respectively. 
Two important biochemical distinctions between the pre 

nyltransferase and synthase reactions are illustrated in FIG. 2. 
The prenyltransferases catalyze carbon-carbon bond forma 
tion between two substrate molecules, whereas the synthases 
catalyze an intramolecular carbon-carbon bond formation. 
The prenyltransferases also catalyze reactions with very little 
variance in the stereochemistry or length of the ensuing poly 
mer. Prenyltransferases differ in the length of the allyic sub 
strates that can be accepted in initiating these reactions. The 
synthases are also substrate speci?c. However, diverse ses 
quiterpene synthases, for example, can utilize the same sub 
strate to produce different reaction products. 
The biosynthesis of isoprenoids such as cyclic terpenes is 

said to be determined by key branch point enzymes referred to 
as terpene synthases. The reactions catalyzed by terpene syn 
thases are complex, intramolecular cyclizations that may 
involve several partial reactions. For example, the bioorganic 
rationale for the cyclization of FPP by two sesquiterpene 
synthases are shown in FIG. 3. In step 1, the initial ionization 
of FPP is followed by an intramolecular electrophillic attack 
between the carbon bearing the diphosphate moiety and the 
distal double bond to form germacene A, a macrocylic inter 
mediate. Intemal ring closure and formation of the eudes 
mane carbonium ion constitutes step 2. For tobacco 5-epi 
aristolochene synthase (TEAS), the terminal step is a hydride 
shift, methyl migration, and deprotonation at C9 giving rise to 
5-epi-aristolochene as depicted in step 3a. Hyoscyamus muti 
cus vetispiradiene synthase (HVS) shares a common mecha 
nism at steps 1 and 2, but differs from TEAS in the third 
partial reaction in which a ring contraction would occur due to 
alternative migration of an electron pair. In each case, a 
monomeric protein of approximately 64 kD catalyzes the 
complete set of partial reactions and requires no cofactors 
other than Mg+2. 

SUMMARY OF THE INVENTION 

In general, the invention features a chimeric isoprenoid 
synthase polypeptide including a ?rst domain from a ?rst 
isoprenoid synthase joined to a second domain from a second, 
heterologous isoprenoid synthase, whereby the chimeric iso 
prenoid synthase is capable of catalyzing the production of 
isoprenoid reaction products that are not produced in the 
absence of the second domain of the second, heterologous 
isoprenoid synthase. In preferred embodiments, the chimeric 
isoprenoid synthase is capable of catalyzing at least two dif 
ferent isoprenoid reaction products; the isoprenoid reaction 
products are cyclic; the second domain of the second, heter 
ologous isoprenoid synthase also determines the ratio of the 
isoprenoid reaction products of the chimeric isoprenoid syn 
thase; the ?rst domain from the ?rst isoprenoid synthase is a 
plant isoprenoid synthase and the second domain from the 
second, heterologous isoprenoid synthase is also from a plant 
isoprenoid synthase. 
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Preferably, the chimeric isoprenoid synthase is chosen 
from the group consisting of (a) the tobacco-Hyoscyamus 
CH4 chimeric isoprenoid synthase; (b) the tobacco-Hyoscya 
mus CH10 chimeric isoprenoid synthase; (c) the tobacco 
Hyoscyamus CH11 chimeric isoprenoid synthase; (d) the 
tobacco-Hyoscyamus CH12 chimeric isoprenoid synthase; 
(e) the tobacco-Hyoscyamus CH13 chimeric isoprenoid syn 
thase; or (f) the tobacco-Hyoscyamus CH14 chimeric iso 
prenoid synthase, all as described herein. 

In preferred embodiments, the chimeric isoprenoid syn 
thase catalyzes the production of an isoprenoid reaction prod 
uct that is of agricultural, pharmaceutical, commercial, or 
industrial signi?cance (e.g., an antifungal agent, antibacterial 
agent, or antitumor agent). 

In other related aspects, the invention features DNA, vec 
tors, and cells (for example, E. coli, Saccharomyces cerevi 
siae, animal or plant cells) encoding or containing a chimeric 
isoprenoid synthase polypeptide. 

In another aspect, the invention features a chimeric iso 
prenoid synthase polypeptide including an asymmetrically 
positioned homologous domain whereby the chimeric iso 
prenoid synthase is capable of catalyzing the production of 
isoprenoid reaction products (preferably, cyclic products) 
when the domain is positioned at its naturally-occurring site 
in the isoprenoid synthase polypeptide. 

In another aspect, the invention features a method for pro 
ducing a chimeric isoprenoid synthase polypeptide, the 
method involving: (a) providing a cell transformed with DNA 
encoding a chimeric isoprenoid synthase positioned for 
expression in the cell; (b) culturing the transformed cell under 
conditions for expressing the DNA; and (c) recovering the 
chimeric isoprenoid synthase. 
By “isoprenoid synthase” is meant a polypeptide that is 

capable of catalyzing a reaction involving the intramolecular 
carbon-carbon bond formation of an allylic diphosphate sub 
strate (for example, a C10, C15, or C2O allylic diphosphate 
substrate) to an isoprenoid product (for example, a monoter 
pene, diterpene, sesquiterpene, or sterol product). Examples 
of such isoprenoid synthases include, without limitation, 
monoterpene synthases (for example, limonene synthase), 
diterpene synthases (for example, casbene synthase), and 
sesquiterpene synthases (for example, 5-epi-aristolochene 
synthase, vetispiradiene synthase, and cadinene synthase) 
that are responsible for cyclization of geranyl diphosphate 
(GPP), famesyl diphosphate (FPP), and geranylgeranyl 
diphosphate (GGPP), respectively. A number of terpene syn 
thases from plant and microbial sources have been isolated 
and characterized (see, for example, Moestra and West, Arch. 
Biochem. Biophys. 2381325, 1985; Hohn and Van Middles 
worth, Arch. Biochem. Biophys. 2511756, 1986; Hohn and 
Plattner, Arch. Biochem. Biophys. 2721137, 1989; Cane and 
Pargellis, Arch. Biochem. Biophys. 2541421, 1987; Munck 
and Croteau, Arch. Biochem. Biophys. 282158, 1990; Alonso 
et al., J Biol. Chem. 26717582, 1992; Savage et al., J Biol. 
Chem. 26914012, 1994; Croteau et al., Arch. Biochem. Bio 
phys. 3091184, 1994; vogeli et al., Plant Physiol. 931182, 
1990; Guo et al., Arch. Biochem. Biophys. 3081103, 1994; and 
Gambliel and Croteau, J Biol. Chem. 2591740, 1984). In 
general, terpene synthases are soluble enzymes having a 
molecular weight of about 40 to 100 kD. Genes encoding a 
number of monoterpene, diterpene, and sesquiterpene syn 
thases have been described for a number of plant and micro 
bial organisms (see, for example, Hohn and Beremand, Gene 
791131, 1989; Proctor and Hohn, JBiol. Chem. 26814543, 
1993; Facchini and Chappell, Proc. Natl. Acad. Sci. 
89111088, 1992; Back and Chappell,JBiol. Chem. 27017375, 
1995; Colby et al., J Biol. Chem. 268123016, 1993; Mau and 
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West, Proc. Natl. Acad. Sci. 9118497, 1994; Chen et al., Arch. 
Biochein. Biophys. 3241255, 1994; and Cane et al., Biochem 
islry 3315846, 1994). 
By “polypeptide” or “protein” is meant any chain of amino 

acids, regardless of length or post-translational modi?cation 
(for example, glycosylation or phosphorylation). 
By “joined to” is meant covalently bonded either directly 

or indirectly (i.e., the domains are separated by an intervening 
amino acid sequence). Such domains may be bonded by any 
means, including, without limitation, a peptide bond or 
chemical linkage. 
By “domain” is meant a contiguous stretch of amino acids 

within a polypeptide or protein. 
By “isoprenoid” is meant a compound that is derived from 

an isoprene building block. In particular, isoprenoid com 
pounds include, without limitation, monoterpenes, diterpe 
nes, sesquiterpenes, and sterols. As described herein, iso 
prenoids are found in a variety of organisms, for example, 
animal, fungal, or bacterial sources. 
By “asymmetrically positioned” is meant located within 

the chimeric polypeptide at a site which differs from its posi 
tion in the naturally-occurring polypeptide. 
By “heterologous” is meant derived from different sources 

(in this case, different polypeptides). 
By “homologous” is meant derived from the same source 

(in this case, the same polypeptide). 
Other features and advantages of the invention will be 

apparent from the following description of the preferred 
embodiments thereof, and from the claims. 

DETAILED DESCRIPTION 

The drawings will ?rst be described. 

DRAWINGS 

FIG. 1 is a schematic illustration showing the isoprenoid 
biosynthetic pathway with respect to the type of end products 
and their respective physiological functions. Broken arrows 
indicate multiple steps or reactions. 

FIG. 2 is a schematic illustration showing the various reac 
tions that are catalyzed by prenyltransferases and terpene 
synthases. 

FIG. 3 is a schematic illustration showing a reaction 
mechanism for the synthesis of eremophilane (tobacco 5-epi 
aristolochene synthase, TEAS) and vetispiradiene (Hyoscya 
mus vetispiradiene synthase, HVS) type sesquiterpene syn 
thases. Partial reactions 1 and 2 are considered common to 
both types of synthases. Mechanistic differences in partial 
reactions 3a and 3b are suf?cient to account for the different 
reaction products shown. 

FIG. 4A is a schematic illustration showing the chimeric 
constructs used to map catalytic domains within sesquiter 
pene synthases. Line drawings depict composite diagrams for 
wildtype (i.e., TEAS and HVS) and chimeric (CHI-CH14) 
sesquiterpene synthase genes that were engineered into the 
bacterial expression vector pGBT-T19. Gene constructs were 
prepared using a combination of the available restriction 
endonuclease sites and ampli?cation of select regions using 
PCR and PCR primers harboring convenient restriction endo 
nuclease sites. Correspondence between unique restriction 
endonuclease sites and amino acid positions are noted. 

FIG. 4B is a photograph of a TLC experiment showing 
synthase enzyme activities in sonicated lysates of E. coli TB1 
cells expressing the TEAS, HVS, and chimeric synthase con 
structs (CHI-CH14) and measured using 3H-FPP. Reaction 
products were separated by argentation-TLC and detected by 
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autoradiography. The radioactivity in 0.5 mm segments of 
each lane of an argentation-TLC plate was determined in a 
scintillation counter, and radioactivity associated with the 
zones for the TEAS and HVS speci?c products was set to 
100%. 

FIG. 5 is a schematic illustration showing the correspon 
dence between exons and functional domains within iso 
prenoid synthases. The upper diagram represents the organi 
zation of exons within the TEAS gene, which is nearly 
identical to that of the HVS and casbene synthase genes. The 
lower diagram shows the alignment of functional domains to 
the exonic organization of the TEAS and HVS genes. Exon 
numbers are shown within the upper diagram, and all other 
numbers refer to amino acid positions, some of which corre 
spond to the noted restriction endonuclease sites. 

FIG. 6 is a schematic diagram showing a domain switching 
strategy used to generate a quiescent synthase (QH1). Sub 
stituting the inactive HVS domain corresponding to exon 4 
into CH3 results in a synthase having an altered enzyme 
activity. 

FIG. 7 is a schematic diagram of a domain switching strat 
egy used for producing a chimeric quiescent-casbene syn 
thase, and possible reaction products. 

FIG. 8 is a schematic illustration of a domain switching 
strategy for producing a chimeric quiescent-cadinene syn 
thase, and possible reaction products. 
Chimeric lsoprenoid Synthases 

Plasmids designed for expressing a chimeric synthase were 
generated by substituting a portion of a gene encoding a 
domain from tobacco 5-epi-aristolochene synthase with a 
portion of a gene encoding a domain from Hyoscyamus 
vetispiradiene synthase. These plasmids were expressed in 
bacteria, and bacterial lysates were prepared and assayed for 
sesquiterpene synthase activity. The sesquiterpene synthase 
assays included an argentation-thin layer chromatography 
(TLC) analysis which distinguished the aristocholene and 
vetispiradiene reaction products (Back and Chappell, J. Biol. 
Chem. 270:7375, 1995). As shown in FIG. 4A, fourteen chi 
meric synthase constructs were generated and were assayed 
as follows. 

Full-length cDNAs for the tobacco 5-epi-aristolochene 
synthase (TEAS) and Hyoscyamus vetispiradiene synthase 
(HVS) were cloned into the EcoRl/Xhol sites of pBluescript 
SK (Stratagene), creating the pBSK-TEAS and pBSK-HVS 
plasmids, respectively (Back and Chappell, J Biol. Chem. 
270:7375, 1995). The TEAS and HVS cDNA inserts ofthese 
expression plasmids were oriented with their translation start 
codons neighboring the EcoRI restriction site and their 3' poly 
A tail ?anked by the Xhol restriction site of the pSK plasmid. 

Chimeric synthases CH1, CH2, CH5, and CH7 were con 
structed by utilizing the conserved Hindlll and Ndel restric 
tion sites found between the tobacco and Hyoscyamus genes. 
CH1 was prepared by ligating the 5' terminal portion of the 
TEAS gene (corresponding to the EcoRI to Hindlll fragment) 
with the 3' terminal portion of HVS gene (corresponding to 
the Hindlll to Kpnl fragment) into the bacterial expression 
vector pGBT-T19 (Gold Biotechnology) predigested with 
EcoRI and Kpnl. 
CH2 was prepared by ligating the 5' terminal portion of the 

TEAS gene (corresponding to the EcoRI to Ndel fragment) 
with the 3' terminal portion of HVS gene (corresponding to 
the Ndel to Kpnl fragment) into pGBT-T19. 
CH5 was prepared by ligating the 5' terminal portion of the 

HVS gene (corresponding to the EcoRI to Hindlll fragment) 
with the 3' terminal portion of TEAS gene (corresponding to 
the Hindlll to Kpnl fragment) into pGBT-T19. 
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6 
CH7 was prepared by ligating the 5' terminal portion of the 

HVS gene (corresponding to the EcoRI to Ndel fragment) 
with the 3' terminal portion of TEAS gene (corresponding to 
the Ndel to Kpnl fragment) into pGBT-T19. 
CH3, CH4, CH12, and CH13 were constructed using con 

ventional polymerase chain reaction (PCR) methodologies, 
with primers designed for the ampli?cation of particular seg 
ments of the HVS gene. To facilitate directional cloning and 
maintenance of reading frame, primers were also designed to 
contain convenient restriction sites. 
CH3 was constructed as follows.An EcoRl/Clal restriction 

fragment of the TEAS gene was isolated and ligated to the 
Clal/Kpnl fragment of the HVS gene. The HVS Clal/Kpnl 
fragment was prepared by PCR methodology using5'-d(GGG 
ATCGATGACATAGCCACGTATGAGGTT)-3' (SEQ ID 
NO: 1; Clal restriction site underlined) as the forward primer 
and 5'-d (AATACGACTCACTATAG)-3' (SEQ ID NO: 2) as 
the reverse primer (corresponding to the T7 sequence found 
in the multiple cloning site of pBSK) using pBSK-HVS as the 
DNA template. The resulting restriction fragment was ligated 
into the EcoRl/Kpnl sites of the pGBT-T19 vector. 
CH4 and CH13 were constructed in a similar manner, but 

using the forward ampli?cation primers 5'-d(CGA 
GTCAACATGGTTTATTGAGGGATA)-3' (SEQ ID NO: 3; 
H1ncll restriction site underlined) and 5'-d(TATTCTA 
GATCTCTATGACGATTATGAA)-3' (SEQ ID NO: 4; Xbal 
restriction site underlined), respectively. 
CH12 was prepared by ligating a PCR fragment corre 

sponding to the ?rst 1326 nucleotides of CH4 with the Clal/ 
Kpnl fragment of the TEAS gene into the EcoRl/Kpnl sites of 
the pGBT-T19 vector. The CH4 fragment was prepared using 
forward ampli?cation primer 5'-d(GGGAGCTC 
GAATTCCATGGCCTCAGCAGCAGTTGCAAACTAT)-3' 
SEQ ID NO: 5; EcoRl restriction site underlined and trans 
lation start codon in bold) and reverse primer 5'-d(GGG 
ATCGATAACTCTGCATAATGTAGCATT)-3' (SEQ ID 
NO: 6; C al restriction site underlined). 

Chimeric synthases CH6, CH8, CH9, CH10, CH11, and 
CH14 were constructed as follows. Ligation of the EcoRI/ 
Hindlll fragment of the HVS gene with the Hindlll/Kpnl 
fragment of CH3 generated CH6. CH8 was created by ligat 
ing the EcoRl/Ndel fragment of HVS with the Ndel/Kpnl 
fragment of CH3. CH9 was created by ligating the EcoRI/ 
Ndel fragment of CH5 with the Ndel/Kpnl fragment of HVS. 
CH10 was constructed by ligating the EcoRl/Hindlll frag 
ment of HVS with the Hindlll/Kpnl fragment of CH4. CH11 
was constructed by ligating the EcoRl/Ndel fragment of HVS 
with the Ndel/Kpnl fragment of CH4. And CH14 was gener 
ated by substituting the EcoRl/Ndel fragment of CH13 with 
the corresponding DNA fragment of pBSK-HVS. The nucle 
otide junctions of the chimeric constructs were con?rmed by 
double-stranded DNA sequencing using the dideoxy nucle 
otide chain termination kit, according to the manufacturer’s 
instructions (U .S. Biochemical Corp). 

Chimeric synthases were expressed in E. coli TB1 cells. 
Procedures for growth of the bacterial cells, induction of gene 
expression, measurement of sesquiterpene synthase enzyme 
activity, and the determination of total protein in the bacterial 
lysates were performed according to the methods described 
by Back and Chappell (Arch. Biochem. Biophys. 315:527, 
1994; J. Biol. Chem. 270:7375, 1995). Reaction products 
were separated by developing G60 silica TLC plates impreg 
nated with 1 5% silver nitrate in benzene:hexane: diethyl ether 
(50:5011). For qualitative evaluations, TLC plates were 
sprayed with Enhance surface ?uorography spray (Dupont) 
and exposed to Kodak XAR-5 ?lm for 2 to 5 days at —70° C. 
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For quantitative evaluations, 0.5 mm zones of an entire lane 
from a TLC plates were scraped into scintillation vials, and 
the radioactivity was determinedusing a Packard 1500 Liquid 
Scintillation Counter. The dominant reaction products gener 
ated by the synthase activities resulting from expression of 
the TEAS, HVS, CH4, and CH14 constructs in bacterial 
lysates were also veri?ed by gas chromatography (GC) and 
gas chromatography-mass spectroscopy (GC-MS) according 
to the conditions described by Chappell et al. (Phylochemis 
try 26:2259, 1987) (data not shown). In addition, mass spectra 
pro?les were compared to that published for 5-epi-aris 
tolochene (Anke and Sterner, Planta Med. 57:344, 1991) and 
the predicted fragmentation pattern for vetispiradiene (Enzell 
et al., Mass Spectrometry Rev. 3:395, 1984). 
As shown in FIGS. 4A-B, the dominant reaction product 

resulting from the expression of the tobacco TEAS gene 
expressed was 5-epi-aristolochene, and vetispiradiene was 
found to be the dominant reaction product resulting from the 
expression of the HVS gene. The predominant reaction prod 
ucts generated by the expression of CH1 and CH2 were also 
HVS-speci?c (i.e., vetispiradiene), with enzyme speci?c 
activities similar to those found for HVS that was expressed 
from the pBSK-HVS plasmid. These results indicated that the 
amino-terminal half of TEAS and HVS were functionally 
equivalent with respect to the HVS carboxy-terminus and do 
not contribute to the speci?city of the reaction product. CH7, 
having an HVS amino terminus and a TEAS carboxy termi 
nus, is the converse construct of CH2, and the resulting syn 
thase activity was expected to result in expression of a TEAS 
speci?c product (i.e., 5-epi-aristolochene). Immunodetection 
assays revealed that synthase protein produced upon expres 
sion of CH7 was found to be of the correct size and expected 
abundance (data not shown); however, no enzyme activity 
was detected. The lack of enzyme activity indicated that 
interactions between the carboxy and amino terminal por 
tions of the protein contributed to enzyme activity. This inter 
pretation is further supported by comparing the speci?c activ 
ity of the enzymes generated by the expression of the CH5 
and CH6 constructs. CH5 resulted in the expression of a 
product having a 10-fold lower speci?c activity of synthase 
enzyme activity than the other chimeric synthases, even 
though the absolute level of expressed protein was similar to 
the other constructs (as determined by immunodetection, data 
not shown). Substituting an HVS carboxy-terminal region 
was found to restore the speci?c activity to the synthase 
enzyme that was generated by CH6. 

Comparison of CH2 and CH3 chimeric synthases provided 
evidence for speci?city of end-product formation residing 
within a domain of approximately 181 amino acids, corre 
sponding to the NdeI and ClaI restriction sites within the 
TEAS and HVS genes. Expression of CH4 unexpectedly 
resulted in the production of a chimeric synthase protein 
capable of generating reaction products re?ective of both the 
TEAS and HVS enzymes. We interpreted this result to indi 
cate that amino acids 261 to 379 within the tobacco 5-epi 
aristolochene synthase are responsible for the TEAS-speci?c 
products (i.e., the region corresponding to the NdeI to HincII 
fragment of the cDNA), while amino acids 379 to 442 within 
the Hyoscyamus protein are responsible for the HVS-speci?c 
products (i.e., the region corresponding to the HincII to ClaI 
fragment of the cDNA). 
Our interpretation was con?rmed by evaluating the expres 

sion products of CH11 and CH12. CH11 represented the 
substitution of the NdeI to HincII fragment of the Hyoscya 
mus gene with the corresponding tobacco gene fragment, and 
resulted in the production of an enzyme having HVS-and 
TEAS-speci?city. CH12 represented a substitution of the 
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8 
HincII to ClaI fragment of the tobacco gene with the corre 
sponding Hyoscyamus gene fragment, and resulted in the 
production of an enzyme having HVS-and TEAS-speci?city. 
Comparing CH11 to CH13 provided a further re?nement in 
the domain characterization of the tobacco enzyme respon 
sible for the TEAS-speci?c products. The fact that CH13 was 
found to be a multifunctional enzyme indicated that the 81 
amino acids encoded by the DNA fragment residing between 
the NdeI to XbaI restriction sites of the tobacco cDNA were 
suf?cient for formation of the predominant TEAS speci?c 
products. This interpretation was con?rmed by substituting 
the domain contained within the NdeI/XbaI HVS cDNA 
restriction fragment of CH14 with that of the TEAS gene 
(FIG. 4A). 
As shown in FIG. 4B, the predominant reaction product(s) 

of the wildtype tobacco TEAS and Hyoscyamus HVS genes 
expressed in bacteria migrated on silver nitrate-TLC plates 
with Rfvalues of 0.41 and 0.31, values consistent with previ 
ous characterization of these products as 5-epi-aristolochene 
and vetispiradiene, respectively (Back and Chappell, J Biol. 
Chem. 27017375, 1995; Back et al., Arch. Biochem. Biophys. 
315:527, 1994). GC and GC-MS analyses indicated that the 
predominant TEAS reaction products were 5-epi-aris 
tolochene (70% of total products, based on percentage of total 
peak areas from GC analysis) and a bicyclic sesquiterpene 
(20%) ([M]+ion at m/z of 204). The predominant HVS reac 
tion product was vetispiradiene (>90%) ([M]+ion at m/z of 
204 with a base peak at m/z 41 and a series of predictable ions 
at m/z 175, 108, 94, and 68), and the predominant reaction 
products of CH4 were 5-epi-aristolochene (18%), a bicyclic 
sesquiterpene (43%), and vetispiradiene (32%) (data not 
shown). 

In addition, studies relying on af?nity puri?cation of his 
tidine-tagged recombinant synthase proteins has revealed ?ve 
other minor reaction products, each representing approxi 
mately 1% of the total products, with all ?ve found at the same 
relative abundance in all the reaction assays. 
Ratio-Determinant Domain 

Another domain of the synthase proteins was identi?ed by 
comparing the relative ratio of the predominant reaction prod 
ucts produced by the multifunctional chimeric synthase 
enzymes (FIG. 4A). For example, the reaction products 
resulting from expression of constructs CH4, CH10, CH11, 
and CH12 were generated in a ratio of 60-70% TEAS-speci?c 
to 30-40% HVS-speci?c. In contrast, an inverse ratio of reac 
tion products resulted from expression of constructs CH13 
and CH14. This result indicated that the region encompassed 
by the XbaI to HincII domain in?uenced the relative ratio of 
reaction products generated by the multifunctional chimeric 
synthase enzymes. These results indicated that two separate 
and distinct domains within the synthase peptide contributed 
directly to the types of reaction products generated, and are 
interrupted by another domain which we refer to as the ratio 
determinant domain (FIG. 5). 
Site-Directed Mutagenesis 

Additional analysis of the product speci?city and ratio 
determinant domains was determined using conventional 
site-directed mutagenesis methodologies. The results of this 
analysis are presented in Table I (below). For example, the 
DDXXD motif, found within the aristolochene speci?c 
domain, is a conserved sequence that is found in a variety of 
terpene biosynthetic enzymes including TEAS and HVS. 
This acidic amino acid cluster is said to coordinate a metal 
cofactor that is necessary to neutralize the diphosphate moi 
ety of FPP in an otherwise lipophilic pocket. Substitution of 
the ?rst aspartic acid residue (D301) of the DDXXD motif 
with either glutamic acid (overall charge conservation) or 
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valine (net loss of acidic charge) residues (i.e., D301QE and 
D301QV) resulted in the formation of an inactivated 
enzyme. A conserved substitution of the second aspartic acid 
(D302) with a glutamic acid residue (i.e., D302—>E) also 
inactivated chimeric synthase enzyme activity by 95%, and 
resulted in a slight alteration of the product distribution of the 
multifunctional enzyme. 

TABLE I 

Mutated Speci?c 
Mutation amino Product ratio Activity 

target gene acid Aristolochene Vetispiradiene (nmol/mg hil) 
CH4 66% 34% 34 

Substrate binding domain (Ndel/Xbal region) 

Tobacco D301V No activity 0 
CH4 R287A No activity 0 
CH4 D301V No activity 0 
CH4 D301E No activity 0 
CH4 D302E 51% 49% 1.8 

Ratio determinant domain (Xbal/HincII region) 

CH4 K347I 64% 3 6% 32 
CH4 H360S 63% 32% 29 
CH4 H364S 65% 35% 38 

Hyoscyamus speci?c domain (HincIUClaI region) 

CH4 T408A 67% 33% 48 
CH4 K420M 68% 32% 29 
CH4 H422A 67% 33% 30 
CH4 N436S 70% 30% 32 
CH4 AT437, 61% 39% 33 

The sites for directed substitutions within the ratio-deter 
minant domain (i.e., K347—>I, H360QS, H364QS) were 
inferred by an analysis of reports that hypothesized the impor 
tance of charged amino acid residues (e.g., histidine or lysine) 
in synthase enzymology, and these sites represented those 
amino acids which displayed the greatest charge differences 
in comparisons between the TEAS and HVS primary 
sequences. None of the three mutations analyzed had any 
effect on overall catalytic activity or the ratio of products 
formed. 
Amino acid substitutions within the HVS speci?c domain 

were chosen on the basis of comparisons between secondary 
structural predictions of the HVS and TEAS proteins. Those 
amino acids mutated appeared to contribute disproportion 
ately to structural distortions in the secondary structure mod 
els of these two proteins, largely because of charge consider 
ations. However, as shown in Table I (above), substitutions 
involving charged to non-charged (i.e., T408QA, K420—>M, 
H422QA) or reduced charged (N436QS, A437—>T, 
V438—>I) amino acids did not affect overall enzyme activity, 
nor the synthesis rate of one product or the other. 
Quiescent Synthases 

To generate a quiescent synthase, the inactive domain cor 
responding to exon 4 of HVS is substituted with the corre 
sponding active domain of CH3, as outlined in FIG. 6. CH3 
contains an inactive domain corresponding to exon 6 of 
TEAS, has convenient NdeI and XbaI restriction sites for the 
desired substitution, and can be overexpressed in bacteria to 
high levels. Domain switching is accomplished using stan 
dard molecular techniques, as described herein. In one par 
ticular example, a PCR ampli?cation product of HVS cDNA 
corresponding to exon 4, encompassing amino acids 261 to 
342 and containing appropriate NdeI and XbaI sites within 
the primers, is substituted for the corresponding region of 
CH3. In generating such constructs, care is exercised to main 
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10 
tain appropriate amino acid residues and the correct reading 
frame, and expression testing of the construct entails a mea 
surement of the protein level in the soluble and insoluble 
fractions of bacterial lysates by immunoblotting techniques, 
as well as by enzyme assays. 

In addition, large scale enzyme reactions are performed, 
the reaction product(s) are extracted into hexane, and the 
products are puri?ed by HPLC methods. Additional evalua 
tion of the quiescent enzyme reaction products is carried out 
using TLC, and comparing the Rf values of the experimental 
sample to those generated by the TEAS and HVS enzymes. 
Retention times of the reaction products (e.g., germacrene or 
germacrene-like reaction product) are also monitored using 
GC, GC-MS, and NMR according to standard methods. 
The quiescent synthase is useful for providing suf?cient 

amounts of the germacrene reaction intermediate(s) (or 
derivatives thereof) to con?rming the chemical rationaliza 
tion for the EAS and VS reactions, and produces a template 
chimeric synthase that may be used for the introduction of 
novel terminal steps in the overall synthase reaction scheme. 
Chimeric Casbene and Cadinene Synthases 

Chimeric isoprenoid synthases are also useful for generat 
ing novel macrocyclic isoprenoids or isoprenoids having 
altered stereochemical properties. For example, isoprenoid 
synthases such as casbene synthase, a diterpene synthase 
which catalyzes the synthesis of a macrocyclic diterpene 
harboring a cyclopropyl side group, and cadiene synthase, a 
sesquiterpene synthase that catalyzes the synthesis of a bicy 
clic sesquiterpene, provide domains useful for engineering 
enzymes capable of producing macrocylic isoprenoids or 
isoprenoid reaction products having altered sterochemical 
properties. A general scheme for producing such chimeric 
synthases is presented in FIGS. 7 and 8. 
To construct such chimeric casbene and cadienne syn 

thases, quiescent amino terminal domains (and other syn 
thase domains as necessary) are substituted with those from 
casbene and cadinene synthase using convenient restriction 
sites and PCR ampli?cation of selected regions as described 
above. Sequences corresponding to the N-terminal, plastid 
targeting sequence of the casbene synthase are deleted in 
these constructs. Chimeric constructs are expressed in bacte 
ria, bacterial lysates are examined for chimeric synthase 
activity, and reaction products are characterized as described 
above, for example, using argentation-TLC. Constructs sup 
porting high levels of synthase activity in bacteria and/or 
activity generating reaction products which migrate with Rfs 
different from aristolochene and vetispiradiene standards are 
considered useful in the invention. Reaction products are also 
analyzed for their retention times by GC and subjected to 
GC-MS and NMR, as necessary. Those domains of casbene 
synthase and cadinene synthase which contribute to the syn 
thesis of unique reaction products may also be subjected to 
?ne detail mapping using a strategy analogous to that 
depicted in FIG. 4A. 
Production of Other Chimeric Isoprenoid Synthases 

Using the standard molecular techniques described herein, 
other chimeric synthases may be readily generated which 
include domains from known or newly isolated synthase 
enzymes. Such chimeric synthases may be tested for activity 
using, for example, any appropriate enzyme assays known to 
those in the art, or by standard immunodetection techniques. 
The isolation of additional synthase coding sequences is 

also possible using standard cloning strategies and techniques 
that are well known in the art. For example, using all or a 
portion of the amino acid sequence of a known synthase 
polypeptide, one may readily design synthase-speci?c oligo 
nucleotide probes, including synthase degenerate oligonucle 
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otide probes (i.e., a mixture of all possible coding sequences 
for a given amino acid sequence). These oligonucleotides 
may be based upon the sequence of either DNA strand and 
any appropriate portion of synthase nucleotide sequence. 
General methods for designing and preparing such probes are 
provided, for example, in Ausubel et al., 1996, Current Pro 
tocols in Molecular Biology, Wiley Interscience, New York, 
and Berger and Kimmel, Guide to Molecular Cloning Tech 
niques, 1987, Academic Press, New York. These oligonucle 
otides are useful for synthase gene isolation, either through 
their use as probes capable of hybridizing to a synthase 
complementary sequences or as primers for various ampli? 
cation techniques, for example, polymerase chain reaction 
(PCR) cloning strategies. 

Hybridization techniques and screening procedures are 
well known to those skilled in the art and are described, for 
example, in Ausubel et al. (supra); Berger and Kimmel (su 
pra); Chen at al. Arch. Biochem. Biophys. 3241255, 1995; and 
Sambrook et al., Molecular Cloning: A Laboratory Manual, 
Cold Spring Harbor Laboratory Press, New York. If desired, 
a combination of different oligonucleotide probes may be 
used for the screening of a recombinant DNA library. The 
oligonucleotides may be detectably-labeled using methods 
known in the art and used to probe ?lter replicas from a 
recombinant DNA library. Recombinant DNA libraries are 
prepared according to methods well known in the art, for 
example, as described inAusubel et al. (supra), or they may be 
obtained from commercial sources. 
As discussed above, synthase oligonucleotides may also be 

used as primers in ampli?cation cloning strategies, for 
example, using PCR. PCR methods are well known in the art 
and are described, for example, in PCR Technology, Erlich, 
ed., Stockton Press, London, 1989; PCR Protocols: A Guide 
to Methods and Applications, Innis et al., eds., Academic 
Press, Inc., New York, 1990; and Ausubel et al. (supra). Prim 
ers are optionally designed to allow cloning of the ampli?ed 
product into a suitable vector, for example, by including 
appropriate restriction sites at the 5' and 3' ends of the ampli 
?ed fragment (as described herein). If desired, a synthase 
gene may be isolated using the PCR “RACE” technique, or 
Rapid Ampli?cation of cDNA Ends (see, e.g., Innis et al. 
(supra)). By this method, oligonucleotide primers based on a 
synthase sequence are oriented in the 3' and 5' directions and 
are used to generate overlapping PCR fragments. These over 
lapping 3'- and 5'-end RACE products are combined to pro 
duce an intact full-length cDNA. This method is described in 
Innis et al. (supra); and Frohman et al., Proc. Natl. Acad. Sci. 
USA 8518998, (1988). 

Useful synthase sequences may be isolated from any 
appropriate organism. Con?rmation of a sequence’s related 
ness to the synthase polypeptide family may be accomplished 
by a variety of conventional methods, for example, sequence 
comparison. In addition, the activity of any synthase protein 
may be evaluated according to any of the techniques 
described herein. 
Chimeric Isoprenoid Synthase Polypeptide Expression 

Chimeric synthase polypeptides may be produced by trans 
formation of a suitable host cell with all or part of a chimeric 
synthase DNA (for example, the chimeric synthase cDNAs 
described above) in a suitable expression vehicle or with a 
plasmid construct engineered for increasing the expression of 
a chimeric synthase polypeptide in vivo. 

Those skilled in the ?eld of molecular biology will appre 
ciate that any of a wide variety of expression systems may be 
used to provide the recombinant protein. The precise host cell 
used is not critical to the invention. The chimeric synthase 
protein may be produced in a prokaryotic host, for example, 
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E. coli TB1, or in a eukaryotic host, for example, Saccharo 
myces cerevisiae, mammalian cells (for example, COS 1 or 
NIH 3T3 cells), or any of a number of plant cells including, 
without limitation, algae, tree species, ornamental species, 
temperate fruit species, tropical fruit species, vegetable spe 
cies, legume species, monocots, dicots, or in any plant of 
commercial or agricultural signi?cance. Particular examples 
of suitable plant hosts include, but are not limited to, Conifers, 
Petunia, Tomato, Potato, Tobacco, Arabidopsis, Lettuce, Sun 
?ower, Oilseed rape, Flax, Cotton, Sugarbeet, Celery, Soy 
bean, Alfalfa, Medicago, Lotus, Vigna, Cucumber, Carrot, 
Eggplant, Cauli?ower, Horseradish, Morning Glory, Poplar, 
Walnut, Apple, Asparagus, Rice, Maize, Millet, Onion, Bar 
ley, Orchard grass, Oat, Rye, and Wheat. 

Such cells are available from a wide range of sources 
including: the American Type Culture Collection (Rockland, 
Md.); or from any of a number seed companies, for example, 
W. Atlee Burpee Seed Co. (Warminster, Pa.), Park Seed Co. 
(Greenwood, SC), Johnny Seed Co. (Albion, Me.), or 
Northrup King Seeds (Harstville, S.C.). Descriptions and 
sources of useful host cells are also found in Vasil I.K., Cell 
Culture and Somatic Cell Genetics ofPlants, Vol I, II, III 
Laboratory Procedures and Their Applications Academic 
Press, New York, 1984; Dixon, R.A., Plant Cell Culture-A 
Practical Approach, IRL Press, Oxford University, 1985; 
Green et al., Plant Tissue and Cell Culture, Academic Press, 
New York, 1987; and Gasser and Fraley, Science 24411293, 
(1 989). 

For prokaryotic expression, DNA encoding a chimeric 
synthase polypeptide is carried on a vector operably linked to 
control signals capable of effecting expression in the prokary 
otic host. If desired, the coding sequence may contain, at its 5' 
end, a sequence encoding any of the known signal sequences 
capable of effecting secretion of the expressed protein into the 
periplasmic space of the host cell, thereby facilitating recov 
ery of the protein and subsequent puri?cation. Prokaryotes 
most frequently used are various strains of E. coli; however, 
other microbial strains may also be used. Plasmid vectors are 
used which contain replication origins, selectable markers, 
and control sequences derived from a species compatible with 
the microbial host. Examples of such vectors are found in 
Pouwels et al. (supra) or Ausubel et al. (supra). Commonly 
used prokaryotic control sequences (also referred to as “regu 
latory elements”) are de?ned herein to include promoters for 
transcription initiation, optionally with an operator, along 
with ribosome binding site sequences. Promoters commonly 
used to direct protein expression include the beta-lactamase 
(penicillinase), the lactose (lac), the tryptophan (Trp) (Goed 
del et al., Nucl. Acids Res. 814057 (1980)), and the tac pro 
moter systems, as well as the lambda-derived PL promoter 
and N-gene ribosome binding site (Simatake et al., Nature 
2921128 (1981)). 
One particular bacterial expression system for chimeric 

synthase polypeptide production is the E. coli pET expression 
system (Novagen). According to this expression system, 
DNA encoding a chimeric synthase polypeptide is inserted 
into a pET vector in an orientation designed to allow expres 
sion. Since the chimeric synthase gene is under the control of 
the T7 regulatory signals, expression of chimeric synthase is 
induced by inducing the expression of T7 RNA polymerase in 
the host cell. This is typically achieved using host strains 
which express T7 RNA polymerase in response to IPTG 
induction. Once produced, recombinant chimeric synthase 
polypeptide is then isolated according to standard methods 
known in the art, for example, those described herein. 

Another bacterial expression system for chimeric synthase 
polypeptide production is the pGEX expression system 
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