1,700 research outputs found
Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling
Magnetization dynamics in a ferromagnet can induce a spin-dependent electric
field through spin motive force. Spin current generated by the spin-dependent
electric field can in turn modify the magnetization dynamics through
spin-transfer torque. While this feedback effect is usually weak and thus
ignored, we predict that in Rashba spin-orbit coupling systems with large
Rashba parameter , the coupling generates the spin-dependent
electric field [\pm(\alpha_{\rm R}m_e/e\hbar) (\vhat{z}\times \partial
\vec{m}/\partial t)], which can be large enough to modify the magnetization
dynamics significantly. This effect should be relevant for device applications
based on ultrathin magnetic layers with strong Rashba spin-orbit coupling.Comment: 4+ pages, 2 figure
Shifting paradigms for fashion: from total to global to smart consumer experience
This review discusses how consumers, the retail industry, and business strategies contribute to the fashion paradigm shift from Total to Global (TCE) to Smart Consumer Experience (SCE) concepts
St. John’s Wort Regulates Proliferation and Apoptosis in MCF-7 Human Breast Cancer Cells by Inhibiting AMPK/mTOR and Activating the Mitochondrial Pathway
St. John’s Wort (SJW) has been used as an estrogen agonist in the systems affected by menopause. Also, hypericin, a bioactive compound of SJW, has been used as a photosensitizer in photodynamic therapy. In the present study, we investigate the anti-proliferative and pro-apoptotic effects of SJWto demonstrate the chemo-preventive effect in human breast cancer cells. MCF-7 cellswere culturedwith DMSO or various concentrations of SJWethanol extract (SJWE). Cell viability, proliferation, apoptosis, the expression of proteins involved in cell growth and apoptosis, and caspase-3/7 activity were examined. SJWE dose-dependently suppressed cell growth and induced apoptosis ofMCF-7 cells. Mechanistically, SJWE enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and decreased the expression of p-mammalian target of rapamycin (p-mTOR) and p-eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). Also, SJWE inhibited the phosphorylation of protein kinase B (Akt) and showed increases in the expression of pro-apoptotic proteins Bax and Bad with decreases in the expression of anti-apoptotic proteins including B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), and p-Bcl-2-associated death promoter (p-Bad). SJWE at 50 µg/mL showed markedly enhanced caspase-7 activation. Taken together, our results provide evidence that SJWE shows anti-proliferative and pro-apoptotic effects via inhibition of AMPK/mTOR and activation of a mitochondrial pathway. Therefore, SJWE can be used as a chemo-preventive agent without photo-activation
Meteorin regulates mesendoderm development by enhancing nodal expression
During gastrulation, distinct lineage specification into three germ layers, the mesoderm, endoderm and ectoderm, occurs through an elaborate harmony between signaling molecules along the embryonic proximo-distal and anterior-posterior axes, and Nodal signaling plays a key role in the early embryonic development governing embryonic axis formation, mesoderm and endoderm specification, and left-right asymmetry determination. However, the mechanism by which Nodal expression is regulated is largely unknown. Here, we show that Meteorin regulates Nodal expression and is required for mesendoderm development. It is highly expressed in the inner cell mass of blastocysts and further in the epiblast and extra-embryonic ectoderm during gastrulation. Genetic ablation of the Meteorin gene resulted in early embryonic lethality, presumably due to impaired lineage allocation and subsequent cell accumulation. Embryoid body culture using Meteorin-null embryonic stem (ES) cells showed reduced Nodal expression and concomitant impairment of mesendoderm specification. Meteorin-null embryos displayed reduced levels of Nodal transcripts before the gastrulation stage, and impaired expression of Goosecoid, a definitive endoderm marker, during gastrulation, while the proximo-distal and anterior-posterior axes and primitive streak formation were preserved. Our results show that Meteorin is a novel regulator of Nodal transcription and is required to maintain sufficient Nodal levels for endoderm formation, thereby providing new insights in the regulation of mesendoderm allocation.open1113sciescopu
Thermal fluctuation field for current-induced domain wall motion
Current-induced domain wall motion in magnetic nanowires is affected by
thermal fluctuation. In order to account for this effect, the
Landau-Lifshitz-Gilbert equation includes a thermal fluctuation field and
literature often utilizes the fluctuation-dissipation theorem to characterize
statistical properties of the thermal fluctuation field. However, the theorem
is not applicable to the system under finite current since it is not in
equilibrium. To examine the effect of finite current on the thermal
fluctuation, we adopt the influence functional formalism developed by Feynman
and Vernon, which is known to be a useful tool to analyze effects of
dissipation and thermal fluctuation. For this purpose, we construct a quantum
mechanical effective Hamiltonian describing current-induced domain wall motion
by generalizing the Caldeira-Leggett description of quantum dissipation. We
find that even for the current-induced domain wall motion, the statistical
properties of the thermal noise is still described by the
fluctuation-dissipation theorem if the current density is sufficiently lower
than the intrinsic critical current density and thus the domain wall tilting
angle is sufficiently lower than pi/4. The relation between our result and a
recent result, which also addresses the thermal fluctuation, is discussed. We
also find interesting physical meanings of the Gilbert damping alpha and the
nonadiabaticy parameter beta; while alpha characterizes the coupling strength
between the magnetization dynamics (the domain wall motion in this paper) and
the thermal reservoir (or environment), beta characterizes the coupling
strength between the spin current and the thermal reservoir.Comment: 16 page, no figur
Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells
BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at 4°C (RPS4) in 3T3-L1 cells.
MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding proteins α (C/EBP α), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4.
RESULTS: Treatment of RPS4 (0-75 ug/mL) or its fractions (0-50 ug/mL) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of PPAR-γ, C/EBP α, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad.
CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity
- …