82 research outputs found

    Volumetric Measurements of Lung Nodules with Multi-Detector Row CT: Effect of Changes in Lung Volume

    Get PDF
    OBJECTIVE: To evaluate how changes in lung volume affect volumetric measurements of lung nodules using a multi-detector row CT. MATERIALS AND METHODS: Ten subjects with asthma or chronic bronchitis who had one or more lung nodules were included. For each subject, two sets of CT images were obtained at inspiration and at expiration. A total of 33 nodules (23 nodules > or =3 mm) were identified and their volume measured using a semiautomatic volume measurement program. Differences between nodule volume on inspiration and expiration were compared using the paired t-test. Percent differences, between on inspiration and expiration, in nodule attenuation, total lung volume, whole lung attenuation, and regional lung attenuation, were computed and compared with percent difference in nodule volume determined by linear correlation analysis. RESULTS: The difference in nodule volume observed between inspiration and expiration was significant (p or =3 mm. The volume of nodules was measured to be larger on expiration CT than on inspiration CT (28 out of 33 nodules; 19 out of 23 nodules > or =3 mm). A statistically significant correlation was found between the percent difference of lung nodule volume and lung volume or regional lung attenuation (p or =3 mm. CONCLUSION: Volumetric measurements of pulmonary nodules were significantly affected by changes in lung volume. The variability in this respiration-related measurement should be considered to determine whether growth has occurred in a lung nodule.Supported by in part NIH NHLBI, RO1 HL 69149 and by a grant from Electronics and Telecommunications Research Institute

    A Non-Invasive method of quantifying pancreatic volume in mice using micro-MRI

    Get PDF
    In experimental models of pancreatic growth and recovery, changes in pancreatic size are assessed by euthanizing a large cohort of animals at varying time points and measuring organ mass. However, to ascertain this information in clinical practice, patients with pancreatic disorders routinely undergo non-invasive cross-sectional imaging of the pancreas using magnetic resonance imaging (MRI) or computed tomography (CT). The aim of the current study was to develop a thinsliced, optimized sequence protocol using a high field MRI to accurately calculate pancreatic volumes in the most common experimental animal, the mouse. Using a 7 Telsa Bruker micro-MRI system, we performed abdominal imaging in whole-fixed mice in three standard planes: axial, sagittal, and coronal. The contour of the pancreas was traced using Vitrea software and then transformed into a 3-dimensional (3D) reconstruction, from which volumetric measurements were calculated. Images were optimized using heart perfusion-fixation, T1 sequence analysis, and 0.2 to 0.4 mm thick slices. As proof of principle, increases in pancreatic volume among mice of different ages correlated tightly with increasing body weight. In summary, this is the first study to measure pancreatic volumes in mice, using a high field 7 Tesla micro-MRI and a thin-sliced, optimized sequence protocol. We anticipate that micro-MRI will improve the ability to non-invasively quantify changes in pancreatic size and will dramatically reduce the number of animals required to serially assess pancreatic growth and recovery.© 2014 Paredes et al

    Case 140: Metastatic Testicular Tumor

    No full text
    corecore