37 research outputs found

    Predicting the Start of the Aedes albopictus (Diptera: Culicidae) Female Adult Biting Season Using the Spring Temperature in Japan

    Get PDF
    Aedes albopictus (Skuse) (Diptera: Culicidae) is distributed widely and is common in much of Japan. In Japan, female adults begin to bite in between April and June, except in the southern subtropics where the mosquito has no dormant period. It is difficult to estimate the first Ae. albopictus biting day because it varies annually depending on the location. Over several years, we surveyed the mosquitoes at different locations that covered a range of warmer to cooler areas of Japan. We found an association between the timing of first biting day by Ae. albopictus and spring temperature. In spring months, the strongest correlation was found with mean April temperatures, followed by March. Based on these data, it may, therefore, be possible to apply a simple formula to predict the timing of the first biting day at various geographical locations in Japan. Forecasting maps were created using a simple prediction formula. We found that the first biting day for Ae. albopictus changed depending on early spring temperatures for each year. There was an approximate 20-d difference in first biting day between years with warmer and cooler springs. This prediction model will provide useful insight for planning and practice of Ae. albopictus control programs, targeting larvae and adults, in temperate regions globally.ArticleJournal of Medical Entomology.54(6):1519-1524(2017)journal articl

    2)デング熱等蚊媒介感染症と媒介蚊について

    No full text

    DNA barcoding of mosquitoes collected through a nationwide survey in 2011 and 2012 in Malawi, Southeast Africa

    No full text
    We conducted a nationwide survey of mosquito distribution in Malawi from November 2011 to April 2012, and from July to September 2012. Using dried specimens of mosquito adults collected during the survey, we analyzed their cytochrome c oxidase subunit I (COI) gene sequences, prepared specimens, and registered the genetic information (658 bp) of 144 individuals belonging to 51 species of 10 genera in GenBank. Using the obtained genetic information, we analyzed the degree of intraspecific variation and investigated the various species from morphological and genetic perspectives. Moreover, we conducted phylogenetic analysis of the medically important species distributed from Africa to Asia and explored their geographical differentiation. Results showed that individuals morphologically classified as Culex univittatus complex included a individual of Cx. perexiguus which, to date, have not been reported in southern Africa. Furthermore, Mansonia uniformis, distributed in Africa and Asia, was revealed to belong to genetically distinct populations, with observed morphological differences of the samples suggesting that they are separate species. The results of genetic analysis further suggested that Cx. ethiopicus is not a synonym of Cx. bitaeniorhynchus, but that it is an independent species; although, in this study, the only definite morphological difference observed was in the shape of the wing scales. Further morphological and genetic investigation of individuals of these species, including larvae, is highly recommended.</p

    Comparative Study of Biological Activities of Venom from Colubrid Snakes Rhabdophis tigrinus (Yamakagashi) and Rhabdophis lateralis

    No full text
    Rhabdophis lateralis, a colubrid snake distributed throughout the continent of Asia, has recently undergone taxonomic revisions. Previously, Rhabdophis lateralis was classified as a subspecies of R. tigrinus (Yamakagashi) until 2012, when several genetic differences were discovered which classified this snake as its own species. To elucidate the toxicity of venom from this poorly studied colubrid, various biological activities were compared between the venom from the two snake species. The components of their venom were compared by the elution profiles of reversed-phase HPLC and SDS-PAGE, and gel filtrated fractions were tested for effects on blood coagulation. Proteolytic activities of these fractions were also assayed by using synthetic substrates, fibrinogen, and matrix proteins. Similar to the R. tigrinus venom, the higher molecular weight fraction of R. lateralis venom contained a prothrombin activator. Both prothrombin time (PT) and activated partial thromboplastin time (APTT) of human plasma were shortened by the addition of R. lateralis and R. tigrinus venom. The thrombin formation was estimated by the uses of SDS-PAGE and chromogenic substrates. These venom fractions also possessed very specific proteinase activity on human fibrinogen, but the substrates for matrix metalloproteinase, such as collagen and laminin, were not hydrolyzed. However, there were some notable differences in reactivity to synthetic substrates for matrix metalloproteinase, and R. tigrinus venom possessed relatively higher activity. Our chemical investigation indicates that the components included in both venoms resemble each other closely. However, the ratio of components and proteolytic activity of some ingredients are slightly different, indicating differences between two closely-related snakes

    Susceptibility of Indigenous and Transplanted Mosquito Spp. to Dengue Virus in Japan

    No full text

    Susceptibility of Indigenous and Transplanted Mosquito Spp. to Dengue Virus in Japan

    Get PDF
    Dengue fever, an acute, mosquito-borne, febrile illness caused by Flavivirus spp., is a problem in Africa, South and Southeast Asia, Latin America, and the Caribbean. A dengue outbreak occurred after nearly 70 years of absence or no detection, and then 158 autochthonous cases occurred in Japan from August to October 15, 2014. The most competent mosquito vectors for dengue virus transmission were Aedes aegypti and A. albopictus. Since A. albopictus is widely distributed across Japan and A. aegypti recently invaded Japan by airplane, we examined the susceptibility of these species to infection by dengue virus

    Genetic analysis of Aedes aegypti captured at two international airports serving to the Greater Tokyo Area during 2012-2015.

    No full text
    The introduction of exotic disease vectors into a new habitat can drastically change the local epidemiological situation. During 2012-2015, larvae and an adult of the yellow-fever mosquito, Aedes aegypti, were captured alive at two international airports serving the Greater Tokyo Area, Japan. Because this species does not naturally distribute in this country, those mosquitoes were considered to be introduced from overseas via air-transportation. To infer the places of origin of those mosquitoes, we genotyped the 12 microsatellite loci for which the most comprehensive population genetic reference is currently available. Although clustering by Bayesian and multivariate methods both suggested that all those mosquitoes captured at the airports in Japan belonged to the Asia/Pacific populations, they were not clustered into a single cluster. Moreover, there was variation in mitochondrial cytochrome oxidase I gene (CoxI) haplotypes among mosquitoes collected in different incidents of discovery which indicated the existence of multiple maternal origins. We conclude there is little evidence to support the overwintering of Ae. aegypti at the airports; nevertheless, special attention is still needed to prevent the invasion of this prominent arbovirus vector

    Elucidation of a Carotenoid Biosynthesis Gene Cluster Encoding a Novel Enzyme, 2,2′-β-Hydroxylase, from Brevundimonas sp. Strain SD212 and Combinatorial Biosynthesis of New or Rare Xanthophylls

    No full text
    A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2′-β-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2′-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation
    corecore