4 research outputs found

    Polyunsaturated Fatty Acid (PUFA) Status in Pregnant Women: Associations with Sleep Quality, Inflammation, and Length of Gestation

    No full text
    <div><p>Mechanistic pathways linking maternal polyunsaturated fatty acid (PUFA) status with gestational length are poorly delineated. This study examined whether inflammation and sleep quality serve as mediators, focusing on the antiinflammatory ω-3 docosahexaenoic acid (DHA; 22:6n3) and proinflammatory ω-6 arachidonic acid (AA; 20:4n6). Pregnant women (<i>n</i> = 135) provided a blood sample and completed the Pittsburgh Sleep Quality Index (PSQI) at 20–27 weeks gestation. Red blood cell (RBC) fatty acid levels were determined by gas chromatography and serum inflammatory markers [interleukin (IL)-6, IL-8, tumor necrosis factor-α, IL-1β, and C-reactive protein] by electrochemiluminescence using high sensitivity kits. Both higher serum IL-8 (95% CI = 0.10,3.84) and poor sleep (95% CI = 0.03,0.28) served as significant mediators linking lower DHA:AA ratios with shorter gestation. Further, a serial mediation model moving from the DHA:AA ratio → sleep → IL-8 → length of gestation was statistically significant (95% CI = 0.02, 0.79). These relationships remained after adjusting for depressive symptoms, age, BMI, income, race, and smoking. No interactions with race were observed in relation to length of gestation as a continuous variable. However, a significant interaction between race and the DHA:AA ratio in predicting preterm birth was observed (p = 0.049); among African Americans only, odds of preterm birth decreased as DHA:AA increased (p = 0.048). These data support a role for both inflammatory pathways and sleep quality in linking less optimal RBC PUFA status with shorter gestation in African American and European American women and suggest that African-Americans have greater risk for preterm birth in the context of a low DHA:AA ratio.</p></div

    Model Linking Fatty Acid Status, Inflammation, Sleep Quality, and Length of Gestation.

    No full text
    <p>Represented by light boxes, we previously found that sleep quality was linked with length of gestation via serum IL-8 (Blair et al., 2015). We now demonstrate a role for fatty acid status within this model. Specifically, serial mediation models moving from RBC fatty acids → sleep → IL-8 → length of gestation demonstrated significant paths starting with DHA (95% CI = 0.001, 0.06) and the DHA:AA ratio (95% CI = 0.02, 0.79).</p

    A-C. Red blood cell fatty acid levels, serum IL-8, sleep quality and birth outcomes.

    No full text
    <p><b>A)</b> The DHA:AA ratio was significantly associated with serum IL-8 (r = -0.20, p = 0.02). No interactions by race were observed. <b>B)</b> Higher RBC DHA:AA ratios predicted better sleep quality, including after adjustment for depressive symptoms, age, BMI, income, race, and smoking, (b = -18.4, p < 0.001). No interactions by race were observed. <b>C)</b> A significant interaction between race and the DHA:AA ratio was observed in predicting PTB (p = 0.049). Among African Americans, odds of PTB decreased as DHA:AA increased (OR for 0.1 unit increase = 0.25 (95% CI = 0.06, 0.99), p = 0.048). This association was not present among European Americans (p = 0.99).</p
    corecore