5 research outputs found

    A Study of Burkholderia pseudomallei in the Environment of Farms in Thanlyin and Hmawbi Townships, Myanmar.

    Get PDF
    Melioidosis is a tropical infection, first described in Myanmar but now rarely diagnosed there, which is widespread in Southeast Asia. The infection is predominantly acquired by people and animals through contact with soil or water. This study aimed to detect the causative organism, Burkholderia pseudomallei, in environmental samples from farms in Thanlyin and Hmawbi townships near Yangon, Myanmar. One hundred and twenty soil samples and 12 water samples were collected and processed using standard microbiological methods. Burkholderia species were isolated from 50 of the 120 (42%) soil samples but none of the water samples. Arabinose assimilation was tested to differentiate between B. pseudomallei and the nonpathogenic Burkholderia thailandensis, and seven of 50 isolates (14%) were negative. These were all confirmed as B. pseudomallei by a species-specific multiplex polymerase chain reaction (PCR). This is the first study to detect environmental B. pseudomallei in Myanmar and confirms that melioidosis is still endemic in the Yangon area

    Biochemical and biological characterization of the venoms of Naja kaouthia and Naja mandalayensis from Myanmar and neutralization effects of BPI cobra antivenom

    No full text
    Snakebite is a neglected public health issue, with many scientific and medical issues to be solved. Cobras are among the most common venomous snakes in Myanmar and are responsible for a considerable number of severe snakebite envenoming. There are three species of cobra (Naja kaouthia, Naja mandalayensis and Ophiophagus hannah) in Myanmar. The study aims to characterize the N. kaouthia and N. mandalayensis venoms and to investigate the efficacy of anti-cobra antivenom (BPI) against the two venoms. Protein components and fibrinogenolytic activity were determined by SDS-PAGE. Enzymatic activities for PLA2, protease and acetylcholinesterase were determined by spectrophotometric method. Anticoagulant activity was determined by recalcification time of citrated human plasma. Myotoxicity, necrotizing activity, median lethal dose (LD50) and median effective dose (ED50) were determined by WHO recommended methods. The SDS-PAGE displayed the proteins and enzymes containing in two venoms were different. N. kaouthia venom exhibited more in PLA2, acetylcholinesterase, anticoagulant, fibrinogenolytic and necrotizing activities than N. mandalayensis venom. N. mandalayensis venom had more protease activity and myotoxicity than N. kaouthia venom. The median lethal dose (LD50) of N. kaouthia and N. mandalayensis venom was 4.33 μg/mouse and 5.04 μg/mouse respectively. Both venoms induced fibrinogen Aα chain degradation in 30 min (N. kaouthia) and in 6 h (N. mandalayensis). The same median effective dose (ED50) (19.56 μg/mouse) showed that anti-NK antivenom can neutralize against lethal effect of N. mandalayensis venom. It can also neutralize the protease activity, anticoagulant activity and fibrinogenolytic activity of both venoms. Immunodiffusion and immunoblotting studies showed that the antivenom recognized its homologous venom (N. kaouthia) and cross-reacted against the heterologous venom (N. mandalayensis). The anti-NK antivenom is suitable to use for N. mandalayensis bite if monospecific antivenom is not available

    Evolutionary Dynamics of Whole-Genome Influenza A/H3N2 Viruses Isolated in Myanmar from 2015 to 2019

    No full text
    This study aimed to analyze the genetic and evolutionary characteristics of the influenza A/H3N2 viruses circulating in Myanmar from 2015 to 2019. Whole genomes from 79 virus isolates were amplified using real-time polymerase chain reaction and successfully sequenced using the Illumina iSeq100 platforms. Eight individual phylogenetic trees were retrieved for each segment along with those of the World Health Organization (WHO)-recommended Southern Hemisphere vaccine strains for the respective years. Based on the WHO clades classification, the A/H3N2 strains in Myanmar from 2015 to 2019 collectively belonged to clade 3c.2. These strains were further defined based on hemagglutinin substitutions as follows: clade 3C.2a (n = 39), 3C.2a1 (n = 2), and 3C.2a1b (n = 38). Genetic analysis revealed that the Myanmar strains differed from the Southern Hemisphere vaccine strains each year, indicating that the vaccine strains did not match the circulating strains. The highest rates of nucleotide substitution were estimated for hemagglutinin (3.37 × 10−3 substitutions/site/year) and neuraminidase (2.89 × 10−3 substitutions/site/year). The lowest rate was for non-structural protein segments (4.19 × 10−5 substitutions/site/year). The substantial genetic diversity that was revealed improved phylogenetic classification. This information will be particularly relevant for improving vaccine strain selection
    corecore