25,449 research outputs found

    Orientational Melting in Carbon Nanotube Ropes

    Full text link
    Using Monte Carlo simulations, we investigate the possibility of an orientational melting transition within a "rope" of (10,10) carbon nanotubes. When twisting nanotubes bundle up during the synthesis, orientational dislocations or twistons arise from the competition between the anisotropic inter-tube interactions, which tend to align neighboring tubes, and the torsion rigidity that tends to keep individual tubes straight. We map the energetics of a rope containing twistons onto a lattice gas model and find that the onset of a free "diffusion" of twistons, corresponding to orientational melting, occurs at T_OM > 160 K.Comment: 4 page LaTeX file with 3 figures (10 PostScript files

    Semiclassical Corrections to the Cardy-Verlinde Formula of Kerr Black Holes

    Full text link
    In this letter, we compute the corrections to the Cardy-Verlinde formula of 44-dimensional Kerr black hole. These corrections are considered within the context of KKW analysis and arise as a result of the self-gravitational effect. Then we show, one can taking into account the semiclassical corrections of the Cardy-Verlinde entropy formula by just redefining the Virasoro operator L0L_0 and the central charge cc.Comment: 8 page

    Quantitative Kinetic Energy Estimated from Disdrometer Signal

    Get PDF
    The kinetic energy of the rain drops was predicted in a relation between the rain rate and rain quantity, derived directly from the rain drop size distribution (DSD), which had been measured by a disdrometer located in the eastern state of Alagoas-Brazil. The equation in the form of exponential form suppressed the effects of large drops at low rainfall intensity observed at the beginning and end of the rainfall. The kinetic energy of the raindrop was underestimated in almost rain intensity ranges and was considered acceptable by the performance indicators such as coefficient of determination, average absolute error, percent relative error, mean absolute error, root mean square error, Willmott's concordance index and confidence index

    Development and application of a self-referencing glucose microsensor for the measurement of glucose consumption by pancreatic ?-cells

    No full text
    Glucose gradients generated by an artificial source and ?-cells were measured using an enzyme-based glucose microsensor, 8-?m tip diameter, as a self-referencing electrode. The technique is based on a difference measurement between two locations in a gradient and thus allows us to obtain real-time flux values with minimal impact of sensor drift or noise. Flux values were derived by incorporation of the measured differential current into Fick's first equation. In an artificial glucose gradient, a flux detection limit of 8.2 ± 0.4 pmol·cm-2·s-1 (mean ± SEM, n = 7) with a sensor sensitivity of 7.0 ± 0.4 pA/mM (mean ± SEM, n = 16) was demonstrated. Under biological conditions, the glucose sensor showed no oxygen dependence with 5 mM glucose in the bulk medium. The addition of catalase to the bulk medium was shown to ameliorate surface-dependent flux distortion close to specimens, suggesting an underlying local accumulation of hydrogen peroxide. Glucose flux from ?-cell clusters, measured in the presence of 5 mM glucose, was 61.7 ± 9.5 fmol·nL-1·s-1 (mean ± SEM, n = 9) and could be pharmacologically modulated. Glucose consumption in response to FCCP (1 ?M) transiently increased, subsequently decreasing to below basal by 93 ± 16 and 56 ± 6%, respectively (mean ± SEM, n = 5). Consumption was decreased after the application of 10 ?M rotenone by 74 ± 5% (mean ± SEM, n = 4). These results demonstrate that an enzyme-based amperometric microsensor can be applied in the self-referencing mode. Further, in obtaining glucose flux measurements from small clusters of cells, these are the first recordings of the real-time dynamic of glucose movements in a biological microenvironment. <br/

    Anomalous double peak structure in Nb/Ni superconductor/ferromagnet tunneling DOS

    Full text link
    We have experimentally investigated the density of states (DOS) in Nb/Ni (S/F) bilayers as a function of Ni thickness, dFd_F. Our thinnest samples show the usual DOS peak at ±Δ0\pm\Delta_0, whereas intermediate-thickness samples have an anomalous ``double-peak'' structure. For thicker samples (dF3.5d_F \geq 3.5 nm), we see an ``inverted'' DOS which has previously only been reported in superconductor/weak-ferromagnet structures. We analyze the data using the self-consistent non-linear Usadel equation and find that we are able to quantitatively fit the features at ±Δ0\pm\Delta_0 if we include a large amount of spin-orbit scattering in the model. Interestingly, we are unable to reproduce the sub-gap structure through the addition of any parameter(s). Therefore, the observed anomalous sub-gap structure represents new physics beyond that contained in the present Usadel theory.Comment: 4 pages, 3 figure

    Two Bipolar Outflows and Magnetic Fields in a Multiple Protostar System, L1448 IRS 3

    Get PDF
    We performed spectral line observations of CO J=2-1, 13CO J=1-0, and C18O J=1-0 and polarimetric observations in the 1.3 mm continuum and CO J=2-1 toward a multiple protostar system, L1448 IRS 3, in the Perseus molecular complex at a distance of ~250 pc, using the BIMA array. In the 1.3 mm continuum, two sources (IRS 3A and 3B) were clearly detected with estimated envelope masses of 0.21 and 1.15 solar masses, and one source (IRS 3C) was marginally detected with an upper mass limit of 0.03 solar masses. In CO J=2-1, we revealed two outflows originating from IRS 3A and 3B. The masses, mean number densities, momentums, and kinetic energies of outflow lobes were estimated. Based on those estimates and outflow features, we concluded that the two outflows are interacting and that the IRS 3A outflow is nearly perpendicular to the line of sight. In addition, we estimated the velocity, inclination, and opening of the IRS 3B outflow using Bayesian statistics. When the opening angle is ~20 arcdeg, we constrain the velocity to ~45 km/s and the inclination angle to ~57 arcdeg. Linear polarization was detected in both the 1.3 mm continuum and CO J=2-1. The linear polarization in the continuum shows a magnetic field at the central source (IRS 3B) perpendicular to the outflow direction, and the linear polarization in the CO J=2-1 was detected in the outflow regions, parallel or perpendicular to the outflow direction. Moreover, we comprehensively discuss whether the binary system of IRS 3A and 3B is gravitationally bound, based on the velocity differences detected in 13CO J=1-0 and C18O J=1-0 observations and on the outflow features. The specific angular momentum of the system was estimated as ~3e20 cm^2/s, comparable to the values obtained from previous studies on binaries and molecular clouds in Taurus.Comment: ApJ accepted, 20 pages, 2 tables, 10 figure

    Who Contributes to the Knowledge Sharing Economy?

    Full text link
    Information sharing dynamics of social networks rely on a small set of influencers to effectively reach a large audience. Our recent results and observations demonstrate that the shape and identity of this elite, especially those contributing \emph{original} content, is difficult to predict. Information acquisition is often cited as an example of a public good. However, this emerging and powerful theory has yet to provably offer qualitative insights on how specialization of users into active and passive participants occurs. This paper bridges, for the first time, the theory of public goods and the analysis of diffusion in social media. We introduce a non-linear model of \emph{perishable} public goods, leveraging new observations about sharing of media sources. The primary contribution of this work is to show that \emph{shelf time}, which characterizes the rate at which content get renewed, is a critical factor in audience participation. Our model proves a fundamental \emph{dichotomy} in information diffusion: While short-lived content has simple and predictable diffusion, long-lived content has complex specialization. This occurs even when all information seekers are \emph{ex ante} identical and could be a contributing factor to the difficulty of predicting social network participation and evolution.Comment: 15 pages in ACM Conference on Online Social Networks 201

    Theoretical study of metal borides stability

    Full text link
    We have recently identified metal-sandwich (MS) crystal structures and shown with ab initio calculations that the MS lithium monoboride phases are favored over the known stoichiometric ones under hydrostatic pressure [Phys. Rev. B 73, 180501(R) (2006)]. According to previous studies synthesized lithium monoboride tends to be boron-deficient, however the mechanism leading to this phenomenon is not fully understood. We propose a simple model that explains the experimentally observed off-stoichiometry and show that compared to such boron-deficient phases the MS-LiB compounds still have lower formation enthalpy under high pressures. We also investigate stability of MS phases for a large class of metal borides. Our ab initio results suggest that MS noble metal borides are less unstable than the corresponding AlB2_2-type phases but not stable enough to form under equilibrium conditions.Comment: 14 pages, 15 figure
    corecore