8 research outputs found

    Preferential Expression of Integrin αvβ8 Promotes Generation of Regulatory T Cells by Mouse CD103<sup>+ </sup>Dendritic Cells

    Get PDF
    BACKGROUND and AIMS: Immune responses in the intestine are controlled by regulatory T cells (Tregs), which prevent inflammation in response to commensal bacteria. A specific population of intestinal dendritic cells (DCs), marked by expression of CD103, generate Tregs more efficiently than other DC populations through mechanisms that involve retinoic acid and transforming growth factor (TGF)-β. However, it is not clear how CD103(+) DCs are specialized for this function. We investigated the ability of CD103(+) DCs to promote Treg generation through activation of TGF-β and the role of integrins with the αv subunit in this process. METHODS: Naïve T cells were cultured with purified DCs from mesenteric lymph nodes (MLNs) or intestines of wild-type and αv conditional knockout mice to assess generation of Tregs. Antigens were administered orally to mice, and antigen-specific generation of Tregs was measured in intestinal tissues. Expression of the integrin αv subunit was measured in purified subpopulations of DCs by quantitative polymerase chain reaction and immunoblot analyses. RESULTS: In vitro, CD103(+) DCs generated more Tregs in the presence of latent TGF-β than other MLN DCs. Efficient generation of Tregs required expression of the integrin αv subunit by DCs; mice that lacked αv in immune cells did not convert naïve T cells to intestinal Tregs in response to oral antigen. CD103(+) DCs derived from the MLNs selectively expressed high levels of integrin αvβ8 compared with other populations of DCs. CONCLUSIONS: Expression of αvβ8 is required for CD103(+) DCs to become specialized and activate latent TGF-β and generate Tregs during the induction of tolerance to intestinal antigens in mice

    Image_1_Altered resting-state functional connectivity of the dorsal anterior cingulate cortex with intrinsic brain networks in male problematic smartphone users.JPEG

    No full text
    The excessive use of smartphones is associated with various medical complications and mental health problems. However, existing research findings on neurobiological mechanisms behind problematic smartphone use are limited. In this study, we investigated functional connectivity in problematic smartphone users, focusing on the default mode network (DMN) and attentional networks. We hypothesized that problematic smartphone users would have alterations in functional connectivity between the DMN and attentional networks and that such alterations would correlate with the severity of problematic smartphone use. This study included 30 problematic smartphone users and 35 non-problematic smartphone users. We carried out group independent component analysis (group ICA) to decompose resting-state functional magnetic resonance imaging (fMRI) data into distinct networks. We examined functional connectivity using seed-to-seed analysis and identified the nodes of networks in group ICA, which we used as region of interest. We identified greater functional connectivity of the dorsal anterior cingulate cortex (dACC) with the ventral attention network (VAN) and with the DMN in problematic smartphone users. In seed-to-seed analysis, problematic smartphone users showed atypical dACC-VAN functional connectivity which correlated with the smartphone addiction proneness scale total scores. Our resting-state fMRI study found greater functional connectivity between the dACC and attentional networks in problematic smartphone users. Our findings suggest that increased bottom-up and interoceptive attentional processing might play an important role in problematic smartphone use.</p

    Housing policies for the elderly in Korea

    No full text

    Image_4_Altered resting-state functional connectivity of the dorsal anterior cingulate cortex with intrinsic brain networks in male problematic smartphone users.JPEG

    No full text
    The excessive use of smartphones is associated with various medical complications and mental health problems. However, existing research findings on neurobiological mechanisms behind problematic smartphone use are limited. In this study, we investigated functional connectivity in problematic smartphone users, focusing on the default mode network (DMN) and attentional networks. We hypothesized that problematic smartphone users would have alterations in functional connectivity between the DMN and attentional networks and that such alterations would correlate with the severity of problematic smartphone use. This study included 30 problematic smartphone users and 35 non-problematic smartphone users. We carried out group independent component analysis (group ICA) to decompose resting-state functional magnetic resonance imaging (fMRI) data into distinct networks. We examined functional connectivity using seed-to-seed analysis and identified the nodes of networks in group ICA, which we used as region of interest. We identified greater functional connectivity of the dorsal anterior cingulate cortex (dACC) with the ventral attention network (VAN) and with the DMN in problematic smartphone users. In seed-to-seed analysis, problematic smartphone users showed atypical dACC-VAN functional connectivity which correlated with the smartphone addiction proneness scale total scores. Our resting-state fMRI study found greater functional connectivity between the dACC and attentional networks in problematic smartphone users. Our findings suggest that increased bottom-up and interoceptive attentional processing might play an important role in problematic smartphone use.</p

    SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance

    No full text
    Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment1, 2, 3. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.American Brain Tumor Association (Basic Research Fellowship)Massachusetts Institute of Technology. School of Science (Fellowship in Cancer Research)Jane Coffin Childs Memorial Fund for Medical Research (Fellowship)Leukemia & Lymphoma Society of America (Fellowship)National Institutes of Health (U.S.) (Grants T32GM007287, K99 CA168940, R01CA168653, 5P30CA14051, CA103866, CA129105, and AI07389)American Cancer Society (Fellowship)American Brain Tumor Association (Discovery Grant)National Institute on Aging (Fellowship)Smith Family FoundationBurroughs Wellcome FundDamon Runyon Cancer Research FoundationStern FamilyUnited States. Dept. of Defense. Congressionally Directed Medical Research Programs (Discovery Award)David H. Koch Institute for Integrative Cancer Research at MITAlexander and Margaret Stewart Trus
    corecore