16 research outputs found

    Kohn-Luttinger effect in nested Fermion liquids

    Full text link
    We study the Kohn-Luttinger effect in a two-dimensional (2D) nested Fermion liquid with a repulsive interaction via the renormalization group method and identify the resulting order parameter symmetry. Using the band structure of the 2D Hubbard model close to half-filling as a prototype, we construct an effective low-energy theory. We use multidimensional bosonization to incorporate the zero-sound channel and find marginal Fermi liquid behavior in the absence of any instability. We show an analog of the Landau theorem in nested Fermion liquids, which serves as the criterion of the BCS instability. Including repulsive or antiferromagnetic exchange interactions in the low-energy theory, we show that the dx2y2d_{x^2-y^2}-wave BCS channel is renormalized to be the most attractive. Below half-filling, when the nesting is not perfect, there is competition between the spin-density-wave (SDW) and the BCS channels; when the SDW coupling is small enough, there occurs a dx2y2d_{x^2-y^2}-wave superconducting instability at sufficiently low temperatures.Comment: Reference added and typos corrected; 12 pages, RevTex 3.0, 5 figures in one postscript file (to appear in Phys. Rev. B

    Fractional ac Josephson effect in p- and d-wave superconductors

    Get PDF
    For certain orientations of Josephson junctions between two p_x-wave or two d-wave superconductors, the subgap Andreev bound states produce a 4pi-periodic relation between the Josephson current I and the phase difference phi: I sin(phi/2). Consequently, the ac Josephson current has the fractional frequency eV/h, where V is the dc voltage. In the tunneling limit, the Josephson current is proportional to the first power (not square) of the electron tunneling amplitude. Thus, the Josephson current between unconventional superconductors is carried by single electrons, rather than by Cooper pairs. The fractional ac Josephson effect can be observed experimentally by measuring frequency spectrum of microwave radiation from the junction. We also study junctions between singlet s-wave and triplet p_x-wave, as well as between chiral p_x + ip_y-wave superconductors.Comment: v. 5: minor update of references in proofs; v.4: minor improvements; v.3: major expansion to 13 pages, 6 figures; v.2: significantly expanded to 6 pages; v.1: 4 pages, 2 figures, RevTeX

    Fractional ac Josephson effect in unconventional superconductors

    No full text
    For certain orientations of Josephson junctions between two px-wave or two d-wave superconductors, the subgap Andreev bound states produce a 4π-periodic relation between the Josephson current I and the phase difference:φ I sin(φ/2). Consequently, the ac Josephson current has the fractional frequency eV h, where V is the dc voltage. In the tunneling limit, the Josephson current is proportional to the first power (not square) of the electron tunneling amplitude. Thus, the Josephson current between unconventional superconductors is carried by ingle electrons, rather than by Cooper pairs. The fractional ac Josephson effect can be observed experimentally by measuring frequency spectrum of microwave radiation from the junctio

    How to detect edge electron states in (TMTSF)2X and Sr2RuO4 experimentally

    Get PDF
    We discuss a number of experiments that could detect the electron edge states in the organic quasi-one-dimensional conductors (TMTSF)2X and the inorganic quasi-two-dimensional perovskites Sr2RuO4. We consider the chiral edges states in the magnetic-field-induced spin-density-wave (FISDW) phase of (TMTSF)2X and in the time-reversal-symmetry-breaking triplet superconducting phase of Sr2RuO4, as well as the nonchiral midgap edge states in the triplet superconducting phase of $(TMTSF)2X. The most realistic experiment appears to be an observation of spontaneous magnetic flux at the edges of Sr2RuO4 by a scanning SQUID microscope.Comment: 6 pages, 5 figures. Submitted to the proceedings of ISCOM-2001 to be published in Synthetic Metals. Uses supplied elsart.cls and synmet.cls. V.2: 1 reference adde

    Quantum vortex fluctuations in cuprate superconductors

    Full text link
    We study the effects of quantum vortex fluctuations in two-dimensional superconductors using a dual theory of vortices, and investigate the relevance to underdoped cuprates where the superconductor-insulator transition (SIT) is possibly driven by quantum vortex proliferation. We find that a broad enough phase fluctuation regime may exist for experimental observation of the quantum vortex fluctuations near SIT in underdoped cuprates. We propose that this scenario can be tested via pair-tunneling experiments which measure the characteristic resonances in the zero-temperature pair-field susceptibility in the vortex-proliferated insulating phase.Comment: RevTex 5 pages, 2 eps figures; expanded; to appear in Phys. Rev.

    Edge electron states for quasi-one-dimensional organic conductors in the magnetic-field-induced spin-density-wave phases

    Full text link
    We develop a microscopic picture of the electron states localized at the edges perpendicular to the chains in the Bechgaard salts in the quantum Hall regime. In a magnetic-field-induced spin-density-wave state (FISDW) characterized by an integer N, there exist N branches of chiral gapless edge excitations. Localization length is much longer and velocity much lower for these states than for the edge states parallel to the chains. We calculate the contribution of these states to the specific heat and propose a time-of-flight experiment to probe the propagating edge modes directly.Comment: 4 pages, 2 figures. V.2: Minor changes to the final version published in PR

    The effect of phase fluctuations on the single-particle properties of the underdoped cuprates

    Full text link
    We study the effect of order parameter phase fluctuations on the single-particle properties of fermions in the underdoped cuprate superconductors using a phenomenological low-energy theory. We identify the fermion-phase field coupling as the Doppler-shift of the quasiparticle spectrum induced by the fluctuating superfluid velocity and we calculate the effect of these fluctuations on the fermion self-energy. We show that the vortex pair unbinding near the superconducting transition causes a significant broadening in the fermion spectral function, producing a pseudogap-like feature. We also discuss the specific heat and show that the phase fluctuation effect is visible due to the short coherence length.Comment: RevTex 11 pages; 11 epsf figures included. Added and updated reference
    corecore