1,524 research outputs found

    The role of phosphodiesterase 3 in endotoxin-induced acute kidney injury

    Get PDF
    Background: Acute kidney injury frequently accompanies sepsis. Endotoxin is known to reduce tissue levels of cAMP and low levels of cAMP have been associated with renal injury. We, therefore, hypothesized that endotoxin induced renal injury by activating phosphodiesterase 3 (PDE3) which metabolizes cAMP and that amrinone an inhibitor of PDE3 would prevent the renal injury. Methods: Animals were divided into three groups (n = 7/group): 1) Control (0.9% NaCl infusion without LPS); 2) LPS (0.9% NaCl infusion with LPS); 3) Amrinone+LPS (Amrinone infusion with LPS). Either lipopolysaccharide (LPS) or vehicle was injected via the jugular vein and the rats followed for 3 hours. We explored the expression of PDE3 isoenzymes and the concentrations of cAMP in the tissue. Results: The PDE3B gene but not PDE3A was upregulated in the kidney of LPS group. Immunohistochemistry also showed that PDE3B was expressed in the distal tubule in the controls and LPS caused PDE3B expression in the proximal as well. However, PDE3A was not expressed in the kidney either in the control or LPS treated groups. Tissue level of cAMP was decreased after LPS and was associated with an increase in blood urea nitrogen, creatinine, ultrastructural proximal tubular changes, and expression of inducible nitric oxide synthase (iNOS) in the endotoxemic kidney. In septic animals the phosphodiesterase 3 inhibitor, amrinone, preserved the tissue cAMP level, renal structural changes, and attenuated the increased blood urea nitrogen, creatinine, and iNOS expression in the kidney. Conclusion: These findings suggest a significant role for PDE3B as an important mediator of LPS-induced acute kidney injury

    Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome–like phenotypes

    Get PDF
    Mutations in the X-linked gene encoding methyl-CpG–binding protein 2 (MeCP2) cause Rett syndrome (RTT), a neurological disorder affecting cognitive development, respiration, and motor function. Genetic restoration of MeCP2 expression reverses RTT-like phenotypes in mice, highlighting the need to search for therapeutic approaches. Here, we have developed knockin mice recapitulating the most common RTT-associated missense mutation, MeCP2 T158M. We found that the T158M mutation impaired MECP2 binding to methylated DNA and destabilized MeCP2 protein in an age-dependent manner, leading to the development of RTT-like phenotypes in these mice. Genetic elevation of MeCP2 T158M expression ameliorated multiple RTT-like features, including motor dysfunction and breathing irregularities, in both male and female mice. These improvements were accompanied by increased binding of MeCP2 T158M to DNA. Further, we found that the ubiquitin/proteasome pathway was responsible for MeCP2 T158M degradation and that proteasome inhibition increased MeCP2 T158M levels. Together, these findings demonstrate that increasing MeCP2 T158M protein expression is sufficient to mitigate RTT-like phenotypes and support the targeting of MeCP2 T158M expression or stability as an alternative therapeutic approach

    A Case of Cutaneous Side Effect of Methotrexate Mimicking Behçet's Disease

    Get PDF
    Methotrexate (MTX) is an antimetabolite which interferes with DNA synthesis, and it is used for the treatment of moderate to severe psoriasis, atopic dermatitis and a wide variety of cutaneous diseases. Although many adverse effects of MTX, including cutaneous ulcerations, have been documented, multifocal mucosal ulceration mimicking Behçet's disease has not been reported. In our case, a 63-year-old female presented with oral, vaginal ulcer and multiple purpuric patches on both legs. Considering patient's clinical course and histopathologic findings, we presumed that these reactions may be the side effect of MTX administered for treatment of necrotizing scleritis. Herein we report the cutaneous side effect of MTX that manifested clinically like Behçet's disease

    Identification of a Chemical That Inhibits the Mycobacterial UvrABC Complex in Nucleotide Excision Repair†

    Get PDF
    ABSTRACT: Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen’s ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by attenuation of uvrB-deficient Mtb in mice. However, it was unknown if Mtb’s Uvr proteins could execute NER. Here we report that recombinant UvrA, UvrB, and UvrC from Mtb collectively bound and cleaved plasmid DNA exposed to ultraviolet (UV) irradiation or peroxynitrite. We used the DNA incision assay to test the mechanism of action of compounds identified in a high-throughput screen for their ability to delay recovery of M. smegmatis from UV irradiation. 2-(5-Amino-1,3,4-thiadiazol-2-ylbenzo[f]chromen-3-one) (ATBC) but not several closely related compounds inhibited cleavage of damaged DNA byUvrA, UvrB, and UvrC without intercalating in DNA and impaired recovery ofM. smegmatis fromUV irradiation. ATBC di
    corecore