172 research outputs found

    Spectral analysis of the background in ground-based, long-slit spectroscopy

    Full text link
    This paper examines the variations, because of atmospheric extinction, of broad-band visible spectra, obtained from long-slit spectroscopy, in the vicinity of some stars, nebulae, and one faint galaxy.Comment: 12 figure

    Gallery of Planetary Nebula Spectra

    Full text link
    We present the Gallery of Planetary Nebula Spectra now available at http://oit.williams.edu/nebulae The website offers high-quality, moderate resolution (~7-10 A FWHM) spectra of 128 Galactic planetary nebulae from 3600-9600 A, obtained by Kwitter, Henry, and colleagues with the Goldcam spectrograph at the KPNO 2.1-m or with the RC spectrograph at the CTIO 1.5-m. The master PN table contains atlas data and an image link. A selected object's spectrum is displayed in a zoomable window; line identification templates are provided. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users: researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and finally, teachers of introductory astronomy can use this database to illustrate basic principles of atomic physics and radiation. To particularly encourage this last use, we have developed two paper-and-pencil exercises to introduce beginning astronomy students to the wealth of information that PN spectra contain.Comment: Two pages, two figures. Contributed paper to IAU Symp. 234, ``Planetary Nebulae in our Galaxy and Beyond.'

    Observational Tests Of Intermediate Mass Star Yields Using Planetary Nebulae

    Get PDF
    This paper summarizes a project designed to study abundances in a sample of planetary nebulae representing a broad range in progenitor mass and metallicity. We collect abundances of C, N, and O determined for the entire sample and compare them with theoretical predictions of planetary nebula abundances from a grid of intermediate-mass star models. We find very good agreement between observations and theory, lending strong support to our current understanding of nucleosynthesis in stars with progenitor masses below 8 solar masses. This agreement between observation and theory also supports the validity of published stellar yields of C and N in the study of the abundance evolution of these two elements.Comment: 2 pages, to appear in the proceedings of ``Cosmic Evolution'', held at Institut d'Astrophysique de Paris, November 13-17, 200

    Abundances of Disk Planetary Nebulae in M31 and the Radial Oxygen Gradient

    Full text link
    We have obtained spectra of 16 planetary nebulae in the disk of M31 and determined the abundances of He, N, O, Ne, S and Ar. Here we present the median abundances and compare them with previous M31 PN disk measurements and with PNe in the Milky Way. We also derive the radial oxygen gradient in M31, which is shallower than that in the Milky Way, even accounting for M31's larger disk scale length.Comment: 2 pages, 1 figure, 1 table, to appear in the proceedings of IAU Symposium No. 283, Planetary Nebulae: An Eye to the Futur

    Abundances of PNe in the Outer Disk of M31

    Full text link
    We present spectroscopic observations and chemical abundances of 16 planetary nebulae (PNe) in the outer disk of M31. The [O III] 4363 line is detected in all objects, allowing a direct measurement of the nebular temperature essential for accurate abundance determinations. Our results show that the abundances in these M31 PNe display the same correlations and general behaviors as Type II PNe in the Milky Way Galaxy. We also calculate photoionization models to derive estimates of central star properties. From these we infer that our sample PNe, all near the peak of the Planetary Nebula Luminosity Function, originated from stars near 2 M_sun. Finally, under the assumption that these PNe are located in M31's disk, we plot the oxygen abundance gradient, which appears shallower than the gradient in the Milky Way.Comment: 48 pages, including 12 figures and 8 tables, accepted by Astrophysical Journa

    ELSA: An Integrated, Semi-Automated Nebular Abundance Package

    Full text link
    We present ELSA, a new modular software package, written in C, to analyze and manage spectroscopic data from emission-line objects. In addition to calculating plasma diagnostics and abundances from nebular emission lines, the software provides a number of convenient features including the ability to ingest logs produced by IRAF's splot task, to semi-automatically merge spectra in different wavelength ranges, and to automatically generate various data tables in machine-readable or LaTeX format. ELSA features a highly sophisticated interstellar reddening correction scheme that takes into account temperature and density effects as well as He II contamination of the hydrogen Balmer lines. Abundance calculations are performed using a 5-level atom approximation with recent atomic data, based on R. Henry's ABUN program. Improvements planned in the near future include use of a three-region ionization model, similar to IRAF's nebular package, error propagation, and the addition of ultraviolet and infrared line analysis capability. Detailed documentation for all aspects of ELSA are available at http://www.williams.edu/Astronomy/research/PN .Comment: 2 pages, contributed paper, IAU Symp. 234, Planetary Nebulae in Our Galaxy and Beyon

    Alpha Element Abundances in a Large Sample of Galactic Planetary Nebulae

    Full text link
    We present emission line strengths, abundances, and element ratios (X/O for Ne, S, Cl, and Ar) for a sample of 38 Galactic disk planetary nebulae (PNe) consisting primarily of Peimbert classification Type I. Spectrophotometry for these PNe incorporates an extended optical/near-IR range of 3600-9600 angstroms including the [S III] lines at 9069 and 9532. We have utilized Emission Line Spectrum Analyzer, a five-level atom abundance routine, to determine T_e, N_e, ionization correction factors, and total element abundances. With a compilation of data from >120 Milky Way PNe, we present results from our most recent analysis of abundance patterns in Galactic disk PNe. We have examined the alpha elements against H II regions and blue compact galaxies (H2BCG) to discern signatures of depletion or enhancement in PNe progenitor stars, particularly the destruction or production of O and Ne. We present evidence that many PNe have higher Ne/O and lower Ar/Ne ratios compared to H2BCGs within the range of 8.5-9.0 for 12 + log(O/H). This suggests that Ne is being synthesized in the low- and intermediate-mass progenitors. Sulfur abundances in PNe continue to show great scatter and are systematically lower than those found in H2BCG at a given metallicity. Although we find that PNe do show some distinction in alpha elements when compared to H2BCG, within the Peimbert classification types studied, PNe do not show significant differences in alpha elements amongst themselves, at least to an extent that would distinguish in situ nucleosynthesis from the observed dispersion in abundance ratios.Comment: 12 pages, 18 figures, 7 tables (note: tables 2-5 are available online only in machine-readable form
    • …
    corecore