3 research outputs found

    Clinically compatible advances in blood-derived endothelial progenitor cell isolation and reprogramming for translational applications

    No full text
    The promise of using induced pluripotent stem cells (iPSCs) for cellular therapies has been hampered by the lack of easily isolatable and well characterized source cells whose genomes have undergone minimal changes during their processing. Blood-derived late-outgrowth endothelial progenitor cells (EPCs) are used for disease modeling and have potential therapeutic uses including cell transplantation and the translation of induced pluripotent stem cell (iPSC) derivatives. However, the current isolation of EPCs has been inconsistent and requires at least 40−80 mL of blood, limiting their wider use. In addition, previous EPC reprogramming methods precluded the translation of EPC-derived iPSCs to the clinic. Here a series of clinically-compatible advances in the isolation and reprogramming of EPCs is presented, including a reduction of blood sampling volumes to 10 mL and use of highly efficient RNA-based reprogramming methods together with autologous human serum, resulting in clinically relevant iPSCs carrying minimal copy number variations (CNVs) compared to their parent line

    Contributions of BMPR2 Mutations and Extrinsic Factors to Cellular Phenotypes of Pulmonary Arterial Hypertension Revealed by Induced Pluripotent Stem Cell Modeling.

    No full text
    Reduced bone morphogenetic protein receptor 2 (BMPR2) signaling is central to the pathobiology of pulmonary arterial hypertension (PAH). However, the reduced penetrance of BMPR2 mutations in families suggests that other factors are required to establish disease (1). To date, it has proved difficult to elucidate these factors due to a lack of appropriate models. Sa et al. (2017) developed an iPSC-EC model of PAH that recapitulated some of the previously described phenotypes of patient-derived PAECs, as well as appropriate responsiveness to Elafin and FK506 (2). This demonstrated a potential utility of iPSCs in modeling PAECs in PAH. However, other phenotypes such as inner mitochondrial membrane (IMM) hyperpolarization, could not be recapitulated. Therefore, there is a need to better understand the contribution of BMPR2 mutations to PAH-associated phenotypes and the requirement for other factors in this process. Two advantages of iPSCs in disease modeling are their amenability to genome editing and their differentiation into specific cell types under serum-free, chemically-defined conditions. This allows the assessment of the impact of a BMPR2 mutation without the confounding effects of genetic differences between cell lines, and to determine the impact of controlled exposure to extrinsic factors that may influence the acquisition of a diseased state. In addition, no iPSC-smooth muscle cell (SMC) model of PAH has yet been described. We have addressed these issues.Supported by funding from the British Heart Foundation (BHF) (project grant PG/14/31/30786 and programme grant RG/13/4/30107), the Cambridge National Institute for Health Research Biomedical Research Centre, the Dinosaur Trust, Fondation Leducq, the Medical Research Council (MRC Experimental Challenge Award – MR/KO20919/1), Pulmonary Hypertension Association UK, Fight for Sight and the Robert McAlpine Foundation. NWM was supported by a BHF Chair Award (CH/09/001/25945) and FNK was supported by a BHF PhD studentship (FS/13/51/30636) and a travel grant from St Catharine’s College Cambridge. AAR and NWM would also like to acknowledge support from the BHF Centre of Regenerative Medicine, Oxford and Cambridge (RM/13/3/30159), the BHF Centre for Research Excellence (RE/13/6/30180), the BHF IPAH cohort grant (SP/12/12/29836), Selwyn and St Catharine’s Colleges, Cambridge, and a Pfizer European Young Researcher of the Year award to AAR
    corecore