5 research outputs found

    Prethodna obrada biljnih stanica enzimima radi ekstrakcije ulja

    Get PDF
    Oil from oilseeds can be extracted by mechanical extraction (pressing), aqueous extraction, or by extraction with organic solvents. Although solvent extraction is the most efficient method, organic solvents are a potential hazard to the life and health for workers as well as to the environment, when solvent vapours are released and act as air pollutant with a high ozone-forming potential. Pressing is safer, environmentally friendly, and it preserves valuable natural components in the resulting oils. The problems associated with pressing are the high energy consumption and the lower yield of oil extraction, because the applied mechanical force does not completely destroy the structural cell components storing the oil. In seed cells, the oil is contained in the form of lipid bodies (oleosomes) that are surrounded by a phospholipid monolayer with a protein layer on the surface. These lipid bodies are further protected by the seed cell walls consisting mainly of polysaccharides such as pectins, hemicelluloses and cellulose, but also of glycoproteins. The use of hydrolases to degrade these barriers is a promising pretreatment strategy to support mechanical extraction and improve the oil yield. It is advisable to use a combination of enzymes with different activities when considering the multicompartment and multicomponent structure of oilseed cells. This article gives an overview of the microstructure and composition of oilseed cells, reviews enzymes capable of destroying oil containing cell compartments, and summarizes the main parameters of enzymatic treatment procedures, such as the composition of the enzyme cocktail, the amount of enzyme and water used, temperature, pH, and the duration of the treatment. Finally, it analyzes the efficiency of proteolytic, cellulolytic and pectolytic enzyme pretreatment to increase the yield of mechanically extracted oil from various types of vegetable raw materials with the main focus on oilseeds.Ulje se iz uljarica može dobiti mehaničkom ekstrakcijom (preÅ”anjem), ekstrakcijom u vodenom mediju ili ekstrakcijom pomoću organskih otapala. Iako je ekstrakcija pomoću otapala najučinkovitija metoda, organska otapala mogu Å”tetno utjecati na zdravlje radnika, kao i na okoliÅ”, zbog isparavanja koja zagađuju okoliÅ” i potiču stvaranje ozona. PreÅ”anje je sigurnija i ekoloÅ”ki prihvatljiva metoda, kojom se vrijedni prirodni sastojci uljarica zadržavaju u dobivenom ulju. Nedostaci ove metode su velika potroÅ”nja energije i manji prinos ulja, jer primijenjena mehanička sila ne uniÅ”tava u potpunosti strukturne komponente stanica u kojima je pohranjeno ulje. U sjemenim stanicama ulje je prisutno u obliku lipidnih kapljica okruženih fosfolipidnim slojem te povrÅ”inskim proteinskim slojem. Ta su lipidna tijela dodatno zaÅ”tićena staničnom stijenkom, koju uglavnom čine polisaharidi poput pektina, hemiceloloza i celuloza, ali i glikoproteini. Primjena hidrolaza za razgradnju takvih zaÅ”titnih slojeva učinkovita je metoda prethodne obrade sjemena uljarica radi poboljÅ”anja mehaničke ekstrakcije i povećanja prinosa ulja. Imajući na umu složenost strukture stanica uljarica preporučljivo je koristiti viÅ”e enzima različitih načina djelovanja. U ovom je revijalnom prikazu dan opis mikrostrukture i sastava stanica uljarica, zatim pregled enzima koji mogu razgraditi stanične komponente koje sadržavaju ulje, te su sažete glavne značajke enzimskih obrada, kao Å”to su sastav mjeÅ”avine enzima, količina enzima i vode, temperatura, pH-vrijednost i trajanje postupka. Naposljetku je ispitana učinkovitost prethodne obrade sjemenki uljane repice pomoću proteolitičkih i pektolitičkih enzima, te enzima Å”to razgrađuju celulozu, na povećanje prinosa mehanički ekstrahiranog ulja iz različitih sirovina, s primarnim fokusom na sjeme uljarica

    Electron Transfer of Cellobiose Dehydrogenase in Polyethyleneimine Films

    No full text
    Abstract Cellobiose dehydrogenase (CDH) is applied as a bioelectrocatalyst in biosensors because its mobile cytochrome domain is capable of direct electron transfer. This study investigates the electron transfer mechanism of CDH molecules embedded in the polycation polyethyleneimine (PEI), which has been reported as a currentā€boosting component of CDHā€based biosensors. By immobilizing different concentrations of CDH and its isolated cytochrome domain in PEI films, we found that increasing concentrations of cytochrome enhanced the film conductivity (up to 251Ā±8ā€…mSā€‰cmāˆ’1) through improved electron transfer between the protein redox centers. The increased electrical conductivity of the film contacts CDH molecules at a greater distance from the electrode. The crossā€linker poly(ethylene glycol) diglycidyl ether improves the packing and contacting of the cytochrome domains, whereas glutaraldehyde reduces the current obtained. Deglycosylation of CDH enhances the conductivity of enzymeā€polymer films by up to 34ā€‰%, implying a higher number of productive electronā€hopping events between cytochrome domains due to enhanced mobility or reduced shielding. By balancing negative charges on the CDH surface at neutral and alkaline pH, PEI increases the interdomain electron transfer and the electrical film conductivity. The resulting increased current output is relevant for inā€…vivo bioanalytical applications
    corecore