29 research outputs found

    Daily Based Morgan–Morgan–Finney (DMMF) Model : A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations

    Get PDF
    In this paper, we present the Daily based Morgan–Morgan–Finney model. The main processes in this model are based on the Morgan–Morgan–Finney soil erosion model, and it is suitable for estimating surface runoff and sediment redistribution patterns in seasonal climate regions with complex surface configurations. We achieved temporal flexibility by utilizing daily time steps, which is suitable for regions with concentrated seasonal rainfall. We introduce the proportion of impervious surface cover as a parameter to reflect its impacts on soil erosion through blocking water infiltration and protecting the soil from detachment. Also, several equations and sequences of sub-processes are modified from the previous model to better represent physical processes. From the sensitivity analysis using the Sobol’ method, the DMMF model shows the rational response to the input parameters which is consistent with the result from the previous versions. To evaluate the model performance, we applied the model to two potato fields in South Korea that had complex surface configurations using plastic covered ridges at various temporal periods during the monsoon season. Our new model shows acceptable performance for runoff and the sediment loss estimation ( NSE ≥ 0.63 , | PBIAS | ≤ 17.00 , and RSR ≤ 0.57 ). Our findings demonstrate that the DMMF model is able to predict the surface runoff and sediment redistribution patterns for cropland with complex surface configurations

    Label-free volumetric optical imaging of intact murine brains

    Get PDF
    A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI)

    Stochastic electrotransport selectively enhances the transport of highly electromobile molecules

    Get PDF
    Nondestructive chemical processing of porous samples such as fixed biological tissues typically relies on molecular diffusion. Diffusion into a porous structure is a slow process that significantly delays completion of chemical processing. Here, we present a novel electrokinetic method termed stochastic electrotransport for rapid nondestructive processing of porous samples. This method uses a rotational electric field to selectively disperse highly electromobile molecules throughout a porous sample without displacing the low-electromobility molecules that constitute the sample. Using computational models, we show that stochastic electrotransport can rapidly disperse electromobile molecules in a porous medium. We apply this method to completely clear mouse organs within 1–3 days and to stain them with nuclear dyes, proteins, and antibodies within 1 day. Our results demonstrate the potential of stochastic electrotransport to process large and dense tissue samples that were previously infeasible in time when relying on diffusion.Simons Foundation. Postdoctoral FellowshipLife Sciences Research FoundationBurroughs Wellcome Fund (Career Awards at the Scientific Interface)Searle Scholars ProgramMichael J. Fox Foundation for Parkinson's ResearchUnited States. Defense Advanced Research Projects AgencyJPB FoundationNational Institutes of Health (U.S.)National Institutes of Health (U.S.) (Grant 1-U01-NS090473-01

    Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot Spots to Reduce Stream Sediment Load in an Upland Agricultural Catchment of South Korea

    Get PDF
    Upland agricultural expansion and intensification cause soil erosion, which has a negative impact on the environment and socioeconomic factors by degrading the quality of both nutrient-rich surface soil and water. The Haean catchment is a well-known upland agricultural area in South Korea, which generates a large amount of sediment from its cropland. The transportation of nutrient-rich sediment to the stream adversely affects the water quality of the Han River watershed, which supports over twenty million people. In this paper, we suggest a spatially explicit mitigation method to reduce the amount of sediment yield to the stream of the catchment by converting soil erosion hot spots into forest. To evaluate the effectiveness of this reconfiguration, we estimated the sediment redistribution rate and assessed the soil erosion risk in the Haean catchment using the daily based Morgan−Morgan−Finney (DMMF) model. We found that dry crop fields located in the steep hill-slope suffer from severe soil erosion, and the rice paddy, orchard, and urban area, which are located in a comparatively lower and flatter area, suffer less from erosion. Although located in the steep hill-slope, the forest exhibits high sediment trapping capabilities in this model. When the erosion-prone crop lands were managed by sequentially reconfiguring their land use and land cover (LULC) to the forest from the area with the most severe erosion to the area with the least severe erosion, the result showed a strong reduction in sediment yield flowing to the stream. A change of 3% of the catchment’s crop lands of the catchment into forest reduced the sediment yield entering into the stream by approximately 10% and a change of 10% of crop lands potentially resulted in a sediment yield reduction by approximately 50%. According to these results, identifying erosion hot spots and managing them by reconfiguring their LULC is effective in reducing terrestrial sediment yield entering into the stream

    Population Dynamics of American Bullfrog (Lithobates catesbeianus) and Implications for Control

    No full text
    Lithobates catesbeianus (American bullfrog), known to be one of the notorious invasive species, was introduced to South Korea and has proliferated in the Korean natural environment for the past 25 years. The ecological impact caused by the species is well known, and several management decisions have been implemented to cull its population. However, the effectiveness of past control decisions is largely unknown. We built a population dynamics model for L. catesbeianus in the Onseok reservoir, South Korea, using STELLA architect software. The population model was based on the demographics and ecological process of the species developing through several life stages, with respective parameters for survivorship and carrying capacity. Control scenarios with varying intensities were simulated to evaluate their effectiveness. The limitations of isolated control methods and the importance of integrated management are shown in our results. The population of the American bullfrog in the reservoir was reduced to a manageable level under intensive control of the tadpole stage, using three sets of double fyke nets and 80% direct removal of juvenile and adult stages. According to our results, integrated, intensive, and continuous control is essential for managing the invasive American bullfrog population. Finally, our modeling approach can assist in determining the control intensity to improve the efficiency of measures against L. catesbeianus

    A Modeling Approach for Quantifying Human-Beneficial Terpene Emission in the Forest: A Pilot Study Applying to a Recreational Forest in South Korea

    No full text
    (1) Background: Recent economic developments in South Korea have shifted people’s interest in forests from provisioning to cultural services such as forest healing. Although policymakers have attempted to designate more forests for healing purposes, there are few established standards for carrying out such designations based on the quantified estimation. (2) Methods: We suggest a modeling approach to estimate and analyze the emission rate of human-beneficial terpenes. For this purpose, we adopted and modified the Model of Emissions of Gases and Aerosols from Nature (MEGAN), a commonly used biogenic volatile organic compounds (BVOCs) estimation model which was suitable for estimating the study site’s terpene emissions. We estimated the terpene emission rate for the whole year and analyzed the diurnal and seasonal patterns. (3) Results: The results from our model correspond well with other studies upon comparing temporal patterns and ranges of values. According to our study, the emission rate of terpenes varies significantly temporally and spatially. The model effectively predicted spatiotemporal patterns of terpene emission in the study site. (4) Conclusions: The modeling approach in our study is suitable for quantifying human-beneficial terpene emission and helping policymakers and forest managers plan the efficient therapeutic use of forests
    corecore