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Summary

Soil erosion is one of the significant environmental problems worldwide, causing surface soil

degradation and freshwater deterioration. As the world’s population increases, the problem

is worsening because erosion-resistant natural ecosystems are being converted into erosion-

prone croplands to meet the increasing demands for food. South Korea is also suffering from

recurrent severe soil erosion and consequent water deterioration in the monsoon season because

of upland agricultural expansion driven by economic incentives. To define the optimal mitigation

measures for soil erosion, we need tools that are suitable for upland agricultural areas. In this

thesis, we focused on the spatial patterns of soil and soil organic matter containing nitrogen (N)

and phosphorus (P), which are relevant to the soil erosion and water quality of mountainous

catchments with complex terrain. Also, we aimed to propose measures to mitigate soil and soil

organic matter exports to streams from mountainous catchments in the Soyang watershed by

spatial reconfiguration of land use and land cover (LULC) at the landscape level.

To investigate the spatial redistribution of soils and soil organic matter from mountain

catchments, we developed a soil erosion model termed the Daily based Morgan–Morgan–Finney

(DMMF) soil erosion model. The DMMF model was derived from the Modified Morgan–Morgan–

Finney (MMMF) model, a variant of the well-known and widely used Morgan–Morgan–Finney

(MMF) model, with modifications to make it suitable for complex terrain configurations under

seasonal monsoon climates. While the MMMF model improved the physical foundations of the

MMF model concerning topography, physical structures of vegetation, and subsurface interflow,

several additional aspects needed to be corrected for a better representation of the physical

processes. As the MMMF model was originated from an area with a simple terrain configu-

ration and comparatively regular rainfall regimes, the model needed modification for a better

representation of the study area, which has a complex terrain configuration under a seasonal

monsoon climate. We identified and corrected the problematic aspects of the calculation in the

effective rainfall, interflow, and transport capacity of the MMMF model by analyzing its entire

process (chapter 2). In chapter three, we suggest a new soil erosion model, the DMMF model,

based on the MMMF model.

In chapter four, we evaluated the effect of a spatial reconfiguration of erosion hotspots on
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stream sediment load from an upland agricultural catchment utilizing the DMMF model. In

this study, we estimated the sediment redistribution pattern and soil erosion risk on the Haean

catchment, a well-known upland agricultural catchment belonging to the Soyang watershed.

According to the results, the DMMF model can be applied to catchments with complicated

terrain configurations affected by a monsoon climate. Results confirmed that a spatial recon-

struction of the landscape, complementarily with other best management practices emphasizing

the management of dry crop field, can be an effective method to reduce sediment yield from

upland agricultural catchments such as Haean.

In the final chapter five, we also investigate the environmental drivers that affect the spatial

redistribution patterns of soil nutrients such as N and P in mountain forests. To achieve this

goal, we used high-resolution light detection and ranging (LiDAR) to derive detailed information

regarding the topography and physical structure of vegetation. Then, we predicted the spatial

patterns of soil nutrients such as N and P in the organic layer and mineral topsoil. Specifically,

we analyzed the relative importance of vegetation and topographical parameters extracted from

LiDAR for a better understanding of the spatial patterns of N and P. In addition, we identified

areas with critical P contents and tested different validation strategies for N and P.
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Zusammenfassung

Die Bodenerosion ist eines der weltweit größten Umweltprobleme und führt zu einer Ver-

schlechterung der Bodenoberfläche und der Süßwasserqualität. Mit dem Anwachsen der Welt-

bevölkerung verschärft sich das Problem, da erosionsresistente natürliche Ökosysteme in erosion-

sgefährdete Anbauflächen umgewandelt werden, um den steigenden Bedarf an Nahrungsmitteln

zu decken. Südkorea leidet auch unter der immer wieder auftretenden starken Bodenerosion

und der daraus resultierenden Wasserqualitätsverschlechterung in der Monsunzeit aufgrund der

landwirtschaftlichen Expansion im Hochland, die durch wirtschaftliche Anreize angetrieben

wird.

Um die optimalen Maßnahmen zur Verminderung der Bodenerosion zu definieren, werden

Werkzeuge benötigt, die für landwirtschaftliche Flächen im Hochland geeignet sind. In der vor-

liegenden Dissertation hat sich der Verfasser auf die räumlichen Verteilungsmuster von Boden

sowie von Stickstoff (N) und Phosphor (P) in der organischen Bodensubstanz konzentriert, die für

die Bodenerosion und die Wasserqualität von Gebirgseinzugsgebieten mit komplexem Gelände

relevant sind. Ein weiteres Ziel der Arbeit besteht darin, geeignete Maßnahmen vorzuschlagen,

um den Abtrag von Boden und organischer Bodensubstanz in Gewässer aus bergigen Einzugs-

gebieten in der Wasserscheide Soyang durch räumliche Umgestaltung von Landnutzung und

Landbedeckung (LULC) auf Landschaftsebene zu verringern.

In der vorliegenden Forschungsarbeit wird das Daily based Morgan–Morgan–Finney (DMMF)

Bodenerosionsmodel entwickelt, mit dem die räumliche Umverteilung von Böden und organis-

cher Bodensubstanz aus Berggebieten untersucht werden kann. Das DMMF-Modell wurde vom

MMMF-Modell (Modified Morgan–Morgan–Finney) abgeleitet, einer Variante des bekannten

und weit verbreiteten MMF-Modells (Morgan–Morgan–Finney), das Modifikationen enthält,

die es für komplexe Geländekonfigurationen unter saisonalen Bedingungen eines Monsunklimas

geeignet machen. Während das MMMF-Modell die physikalischen Grundlagen des MMF-Modells

in Bezug auf Topographie, physikalische Vegetationsstrukturen und unterirdische Strömungen

verbesserte, mussten einige zusätzliche Aspekte korrigiert werden, um die physikalischen Prozesse

besser darstellen zu können. Da das MMMF-Modell aus einem Gebiet mit einer einfachen Gelän-

dekonfiguration und vergleichsweise regelmäßigen Niederschlagsbedingungen stammt, musste
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das Modell modifiziert werden, um das Untersuchungsgebiet, das eine komplexe Geländekonfig-

uration unter einem saisonalen Monsunklima aufweist, besser erfassen zu können.

In der vorliegenden Arbeit wurden die problematischen Aspekte der Berechnung in Bezug auf

die effektive Niederschlags-, Interflow- und Transportkapazität des MMMF-Modells identifiziert

und korrigiert, indem der Gesamtprozess analysiert wurde (Kapitel 2). In Kapitel drei schließlich

wird ein neues Bodenerosionsmodell vorgeschlagen, das DMMF-Modell, das auf dem MMMF-

Modell basiert.

In Kapitel 4 untersuchte der Verfasser den Effekt einer räumlichen Rekonfiguration von Ero-

sionsherden auf die Sedimentbelastung eines landwirtschaftlichen Einzugsgebiets im Hochland

mithilfe des DMMF-Modells. Dafür wurde das Sedimentumverteilungsmuster und das Boden-

erosionsrisiko im Haean-Einzugsgebiet, einem bekannten landwirtschaftlichen Hochlandeinzugs-

gebiet der Wasserscheide Soyang, einer wissenschaftlichen Beurteilung und Einschätzung unter-

zogen.

Den Ergebnissen zufolge kann das DMMF-Modell auf Einzugsgebiete mit komplizierten

Geländekonfigurationen angewendet werden, die von einem Monsunklima betroffen sind. Die

Ergebnisse bestätigten, dass eine räumliche Rekonfiguration der Landschaft in Ergänzung zu

anderen bewährten Bewirtschaftungsmethoden, bei denen die Bewirtschaftung von Trocken-

feldern im Vordergrund steht, eine wirksame Methode zur Verringerung des Sedimentaustrags

aus landwirtschaftlichen Einzugsgebieten im Hochland wie Haean sein kann.

Im letzten Kapitel 5 werden die Umweltfaktoren, die die räumlichen Umverteilungsmuster

von Bodennährstoffen wie N und P in Bergwäldern beeinflussen, untersucht. Um dieses Ziel zu

erreichen, wurde das LiDAR-Verfahren (light detection and ranging) verwendet, um detaillierte

Informationen zur Topographie und physikalischen Struktur der Vegetation zu gewinnen. Daran

anschließend wurde eine Einschätzung der zukünftigen räumlichen Muster von Bodennährstoffen

wie N und P in der organischen Schicht und im mineralischen Oberboden vorgenommen. Im

Zentrum stand dabei die Analyse der relativen Bedeutung der Vegetation und der aus LiDAR

extrahierten topografischen Parameter für ein besseres Verständnis der räumlichen Muster von

N und P. Zusätzlich identifizierte der Verfasser Gebiete mit kritischen P-Gehalten und testete

verschiedene Validierungsstrategien für N und P.



v

Acknowledgements

Undertaking this graduate research studies has been an invaluable experience for me, and it

would not have been possible to do without the blessing of God, and the support that I received

from many people.

I would like to express my wholehearted gratitude to my doctor father, Prof. Dr. Björn

Reineking, for all the support, excellent guidance, and generous patience that he gave throughout

my doctoral research studies. He gave me a great opportunity to study at Bayreuth University

as a member of the TERRECO project and always took me in the right direction. Without his

tremendous support and help, this Doctoral thesis would not have been finished. I sincerely

show my thanks to Prof. Dr. Bernd Huwe for his valuable comments and discussion on the

topics of soil erosion.

I gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft

(DFG). All the research studies in this thesis were carried out in the framework of the In-

ternational Research Training Group TERRECO (GRK 1565/2), funded by the Deutsche

Forschungsgemeinschaft (DFG) at the University of Bayreuth. I also want to thank the head

of the TERRECO project, Prof. Dr. John Tenhunen, whose passion and efforts led this project

successfully and has been a good model for every member of the project.

My special thanks also to all the members of the TERRECO project, especially Gwanyong

Jeong, Kiyong Kim, Eun-young Jung, Saem Lee, Youngsun Kim, Ilkwon Kim, Jong Yol Park,

Jintae Hwang, Mi-Hee Lee, Bumsuk Seo, Heera Lee, Ikchang Choi, Hamada Elsayed Ali, Jean-

Lionel Payeur-Poirier, Ganga Ram Maharjan, Marianne Ruidisch, Cosmas Lambini, Silvia Parra,

Steve Lindner, Wei Xue, and Hannes Oeverdieck, for the friendly conversations and passionate

discussions that I shared with them, and the generous encouragement that I received from them.

Their encouragement and support allowed me to move forward through hardship and adversity

during my graduate research studies. I am also grateful to Bärbel Heindl-Tenhunen, Sandra

Thomas, Margarete Wartinger and Andreas Kolb, for their outstanding help in the office work.

Many thanks also go to Violaine Zigan, for her kind help in preparing documents for this thesis.

Besides the other members of the TERRECO project, I would like to express my gratitude to

Sebastian Arnold, my good friend and great mentor. May his soul rest in peace.



vi

I also want to express my thanks to all members of the biogeographical modelling department,

Timothy Thrippleton, Eva-Marie Obermaier, Klara Dolos, and for their sincere help from the

beginning of my life in Bayreuth. I also want to show my gratitude to Jaewoo Jung, Dong-jae

Lee-Otto, and Frau Mader. Thanks to them, I could enjoy happy and beautiful days in Bayreuth.

I am indebted to Prof. Dongwook Ko and all the members of Landscape ecology lab in Kookmin

University, for their encouragement during the final stages of my doctoral studies in Korea.

Last but not least, I would like to express my gratitude to my father, my sister, and especially

to my beloved wife, Bora, for their countless sacrifices, unlimited support, and perseverance for

waiting so far. And to my son, Yuchan, for being such a good little boy, and making it possible

for me to complete what I started.



Contents

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Synopsis 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 General introduction of soil erosion . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Soil erosion problem in the Soyang watershed . . . . . . . . . . . . . . . 2

1.1.3 State of the art of soil erosion study in the Soyang watershed . . . . . . . 3

1.1.4 Comparison of soil erosion models with the Morgan-Morgan-Finney model 5

1.1.5 Spatial distribution of substances and nutrients in the mountainous forest 7

1.1.6 TERRECO project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.7 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.7.1 Development of a soil erosion model for a complex terrain region

under a monsoonal climate regime . . . . . . . . . . . . . . . . 9

1.1.7.2 Effect of spatial reconfiguration of landscape on stream sediment

load from an upland agricultural catchment . . . . . . . . . . . 9

1.1.7.3 Investigating environmental drivers that determine spatial redis-

tribution patterns of soil nutrients in the mountain forest . . . . 10

1.2 Method and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Study areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vii



CONTENTS viii

1.2.2 Development of a soil erosion model for a complex terrain region under a

monsoonal climate regime (Chapters 2 & 3) . . . . . . . . . . . . . . . . 12

1.2.3 Effect of spatial reconfiguration of landscape on reducing sediment yield

from the catchment (Chapter 4) . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.4 Effect of topography and vegetation structure on spatial patterns of soil

nutrients (Chapter 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Development of a soil erosion model for a complex terrain region under a

monsoonal climate regime (Chapters 2 & 3) . . . . . . . . . . . . . . . . 18

1.3.2 Effect of spatial reconfiguration of landscape on reducing sediment yield

from the catchment (Chapter 4) . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3 Effect of topography and vegetation structure on spatial patterns of soil

nutrients (Chapter 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 List of manuscripts and specification of individual contributions . . . . . . . . . 26

2 Commentary on Modified MMF model by Morgan and Duzant (2008) 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Problematic parts of the MMMF model . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 Trigonometric error in the calculation of effective rainfall . . . . . . . . . 43

2.2.1.1 Consequence of the error in calculating effective rainfall . . . . 44

2.2.2 Quantity estimation error in calculating interflow . . . . . . . . . . . . . 46

2.2.2.1 Incorrect formula in the interflow equation . . . . . . . . . . . . 46

2.2.2.2 Discrepancy between generated and transferred interflow . . . . 48

2.2.2.3 Consequence of the error in calculating interflow . . . . . . . . . 49

2.2.3 Improperly normalized C-factor in the transport capacity equation . . . . 50

2.2.3.1 Consequence of improper normalization of the C-factor . . . . . 51

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Appendix 2.A Derivation of the corrected interflow equation using Darcy’s law . . . 53



CONTENTS ix

3 Daily Based Morgan–Morgan–Finney (DMMF) Model 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 The DMMF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Hydrological Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2.1 Surface Runoff Process . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2.2 Interflow Process . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.3 Sediment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.3.1 Sediment Delivery to Surface Runoff . . . . . . . . . . . . . . . 67

3.2.3.2 Gravitational Deposition of Suspended Sediments . . . . . . . . 70

3.2.3.3 Estimation of Sediment Loss from an Element . . . . . . . . . . 72

3.2.4 Estimation of Total Runoff and Soil Erosion for Rainfall Period . . . . . 73

3.3 Testing the DMMF Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 Sensitivity Analysis of the Model . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Testing the DMMF Model in the Field . . . . . . . . . . . . . . . . . . . 75

3.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Effect of spatial reconfiguration on reducing stream sediment load 90

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.3 Model Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.4 Model Calibration and Validation . . . . . . . . . . . . . . . . . . . . . . 101

4.2.4.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.4.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.5 Identifying Annual Sediment Redistribution Patterns and Assessing Soil

Erosion Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2.6 Evaluation of the Impact of Spatial Reconfiguration of Erosion Hot Spots

into Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



CONTENTS x

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.1 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 Sediment Redistribution Pattern of the Catchment . . . . . . . . . . . . 110

4.3.3 Impacts of Conversion of Erosion Hot Spots into Forest on Total Sediment

Yield Entering the Stream . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4.1 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.2 Assessment of Soil Erosion Risk and the Effectiveness of Spatial Reconfig-

uration of Erosion Hot Spots on Reducing Sediment Yield Entering the

Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix 4.A Detailed Structure of the DMMF Soil Erosion Model . . . . . . . . . 119

4.A.1 Hydrological Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.A.2 Sediment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Spatial patterns of topsoil nitrogen and phosphorus 132

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.1 Research area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2.2 Soil sampling and chemical analyses . . . . . . . . . . . . . . . . . . . . . 136

5.2.3 Environmental predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.4 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.1 Descriptive statistics of soil nutrients . . . . . . . . . . . . . . . . . . . . 139

5.3.2 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.3 Environmental drivers of spatial nutrient patterns . . . . . . . . . . . . . 143

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.1 Predictors of soil N and P . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4.2 Spatial patterns of N/P ratios . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4.3 Model performance based on different cross validation schemes . . . . . . 147

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



CONTENTS xi

Declaration/Erklärungen 160



List of Figures

Figure 1.1 Location of the Soyang watershed and two study sites . . . . . . . . . . 11

Figure 1.2 Schematic hydrological phase of the model . . . . . . . . . . . . . . . . 13

Figure 1.3 Schematic sediment phase of the model . . . . . . . . . . . . . . . . . . 13

Figure 2.1 Conceptual representation of a hillslope . . . . . . . . . . . . . . . . . . 44

Figure 2.2 Comparison of the effective rainfall equations from MMF model and its

variants with the corrected one. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 2.3 Conceptual representation of the interflow . . . . . . . . . . . . . . . . . 47

Figure 2.4 Extent of the overestimation of IFMMMF compared with IFcorrected by

slope and resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 2.5 Extent of the discrepancy between the generated interflow from a con-

tributing element and the transferred interflow to a receiving element. . . . . . . 50

Figure 2.A1Conceptual representation of soil water in an element . . . . . . . . . . 53

Figure 3.1 Schematic hydrological processes within an element . . . . . . . . . . . . 63

Figure 3.2 Conceptual representation of the effective rainfall (Reff ) on a slope

element without permanent interception of rainfall . . . . . . . . . . . . . . . . . 65

Figure 3.3 Conceptual representation of interflow in an element . . . . . . . . . . . 67

Figure 3.4 Schematic sediment phase of an element . . . . . . . . . . . . . . . . . . 68

Figure 3.5 Sobol’ total indices of model input parameters for a single element . . . 76

Figure 3.6 Sobol’ total indices for runoff (Q) and sediment loss (SL) of the two field

sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 3.7 Comparison between simulated and observed runoff (Q) and sediment

loss (SL) for field 1 and field 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.1 General description of the study area . . . . . . . . . . . . . . . . . . . 95

Figure 4.2 Schematic hydrological phase of the DMMF model . . . . . . . . . . . . 96

xii



LIST OF FIGURES xiii

Figure 4.3 Schematic sediment phase of the DMMF model . . . . . . . . . . . . . . 97

Figure 4.4 Represented soil class from a 2009 catchment-wide field survey . . . . . 99

Figure 4.5 LULC classes and their spatial configurations for the Haean catchment . 100

Figure 4.6 Calibration and validation results for stream discharge and suspended

sediment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 4.7 Annual net soil erosion and soil erosion class of the Haean catchment . . 111

Figure 4.8 Total annual sediment yields and sediment yield reduction efficiency of

the spatial reconfiguration of erosion hot spots . . . . . . . . . . . . . . . . . . . 113

Figure 5.1 Research area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 5.2 Model validation based on R-square with cross validation methods . . . 141

Figure 5.3 Boxplots showing standard deviations of 100 predicted values for each

raster cell with cross validation methods . . . . . . . . . . . . . . . . . . . . . . 142

Figure 5.4 Maps of mean and coefficient of variation (CoV) of 100 models of phos-

phorus in the organic layer (Po) with cross validation methods . . . . . . . . . . 143

Figure 5.5 Mean relative importance of predictors for nitrogen and phosphorus based

on the increased mean square error (%incMSE) from random forest . . . . . . . 145

Figure 5.6 Predicted mean soil N and P content and ratios . . . . . . . . . . . . . . 146

Figure 5.S1Model validation based on root mean square error (RMSE) with cross

validation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 5.S2Predicted SD nitrogen and phosphorus content and ratios . . . . . . . . 159



List of Tables

Table 1.1 Input parameters of the daily based Morgan–Morgan–Finney (DMMF)

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Table 2.1 Previous studies applying the MMF model and its variants to steep hillslopes 45

Table 3.1 Input parameters and their range for sensitivity analysis. . . . . . . . . . 75

Table 3.2 Range of unmeasured parameters for sensitivity analysis. . . . . . . . . . 77

Table 3.3 Optimized parameters from the DE algorithm. . . . . . . . . . . . . . . . 78

Table 4.1 Input parameters of the daily based Morgan–Morgan–Finney (DMMF)

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 4.2 Typical soil characteristics of each represented soil class of the Haean

catchment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 4.3 The initial parameter settings for each LULC class. . . . . . . . . . . . . 101

Table 4.4 Soil erosion risk categories defined by OECD . . . . . . . . . . . . . . . . 105

Table 4.5 List of important parameters from forested site . . . . . . . . . . . . . . . 107

Table 4.6 List of important parameters other than forest-related parameters . . . . 109

Table 4.7 Mean annual net soil erosion rate (t/(hayear)) and mean slope of each

LULC type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Table 5.1 Environmental predictors for digital soil mapping. . . . . . . . . . . . . . 137

Table 5.2 Statistical summary of N and P content (mgkg−1) and ratios. . . . . . . 140

Table 5.3 Statistical summary of N and P content (mgkg−1) and ratios. . . . . . . 144

xiv



Chapter 1

Synopsis

1.1 Introduction

1.1.1 General introduction of soil erosion

Soil erosion by water is a natural phenomenon referring to surface wear that occurs when

bare soil is exposed to water (Pimentel, 2006). Soil particles are detached from the surface

when the splash energy of raindrops or the shear stress of surface runoff are greater than the

cohesive forces of surface soil particles. Detached particles are suspended in and transported

by water when the energy of the surface runoff is strong enough to carry them (Pimentel et al.,

1995, Morgan, 2005). Transported sediments leave their original locations and enter aquatic

ecosystems such as streams, rivers, and reservoirs. As soil nutrients adhere to surface soil, soil

erosion degrades soil productivity and causes eutrophication of water, which adversely affects

the sustainability of natural and human-managed ecosystems (Pimentel and Kounang, 1998,

Lal, 2001).

In general, agricultural ecosystems are more vulnerable to soil erosion than natural ones

because the former tend to have less surface- and canopy covers than natural ecosystems such

as forests and pastures. In addition, the physical structure of the surface soil of agricultural

ecosystems is weaker than those of natural ecosystems as soils in agricultural fields are exposed

to frequent anthropogenic perturbations (e.g., tillage practices, and depletion of soil organic

matter by intensive agricultural activity) (Pimentel and Kounang, 1998, Lal, 2001). Therefore,

agricultural expansion and intensification have accelerated soil erosion and accrued environmen-

tal and economic costs such as the degradation of soil fertility, decreasing crop productivity,

eutrophication, reduced reservoir storage, and increased water treatment cost (Pimentel et al.,

1995).

1
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1.1.2 Soil erosion problem in the Soyang watershed

Soil erosion is a serious problem both environmentally and economically in the Soyang

watershed, South Korea (Kim et al., 2016, Maharjan et al., 2016). The watershed is located

upstream of the Han River basin, the largest water basin in South Korea (Chang, 2008). As the

Han River basin is the main freshwater resource for over twenty million people (approximate

50% of the South Korean population), securing adequate water quantity and sustaining clean

water quality are among the most important goals for the Soyang watershed (Chang, 2008, 2005,

Lee et al., 2017).

However, the region suffers from periodic severe soil erosion and consequent water deteriora-

tion due to the East Asian summer monsoon and its attendant concentrated rainfall (Maharjan

et al., 2016, Yoon and Woo, 2000). In recent decades, the soil erosion of the Soyang watershed

deteriorated owing to agricultural expansion and intensification necessitated by a rapid increase

in the population of the Han River basin region together with irregular and extremely heavy

rainfall due to climate change (Reza et al., 2016). The problem is more notable in upland agri-

cultural areas such as the Haean catchment, where the well-preserved forest hillslopes have been

converted into intensively managed dry crop fields subsequent to their being clear-cut. Owing

to topography, erosion-prone hillslopes that experience massive land use and land cover (LULC)

changes generate a considerable amount of sediment every summer during the monsoon season

(Arnhold et al., 2013, Ruidisch et al., 2013, Arnhold et al., 2014). To compensate for soil and soil

nutrients lost from repeated soil erosion, farmers in the Haean catchment apply a large amount

of fertilizer and import soils from outside of the agricultural fields as conventional practices

(Maharjan et al., 2016). Added soil and applied fertilizer, loosely placed on the surface, tend to

be easily washed out by the seasonal concentrated rainfall, which often causes severe terrestrial

soil erosion at the entrance to inland water systems, leading to eutrophication (Pimentel et al.,

1995, Lee, 2008).

Another source of water deterioration in the Soyang watershed is forest-originated matters,

including surface soil particles and a massive amount of woody debris, both of which contain

ample nutrients such as nitrogen and phosphorus (Harmon et al., 1986, Choi, 2014). Inflowing

forest-originated matters to the Soyang reservoir not only increase the turbidity of water but

also cause eutrophication by nutrients adhering to soil particles or being released from decayed

woody debris in the water (Choi, 2014).

To mitigate the problem, a variety of legislation and best management practices have been

applied in the Soyang watershed. The government of South Korea established legislation on
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creating crop lands, which strictly prohibits converting forests into crop lands and cultivating

hillslopes with gradients of 15% or above. Soil collecting from forests and importing soils for

upland agricultural areas are also regulated by legislation (Jeon and Kang, 2010). Local gov-

ernments have focused on mitigation measures by adopting various best management practices

(BMPs) in regions with severe soil erosion. They have encouraged farmers to plant or preserve

natural vegetation on field margins around crop fields, and have instituted fallowing for the

upland agricultural areas with severe soil erosion utilizing subsidies to farmers of the area. Addi-

tionally, they have built sediment capturing infrastructures such as sediment settling basins and

erosion control dams, to reduce the amount of sediment flowing into streams and the Soyang

reservoir (Jeon and Kang, 2010).

1.1.3 State of the art of soil erosion study in the Soyang watershed

Various field- and model-based studies have been conducted on the Soyang watershed and

Haean catchment to determine the main drivers of soil erosion and to help in decision-making.

Field-based studies have been performed at the plot scale, focusing on the impact of field

management methods on surface water discharge and soil erosion rate in the Haean catchment.

Ruidisch et al. (2013), in field experiments, examined the effect of plastic mulching of the dry

crop fields on surface runoff and soil erosion. They found that ridge tillage with plastic mulching

caused more soil erosion than ridge tillage without plastic mulching. As the plastic-covered

ridge prevents water from infiltrating into the soil, surface water is accumulated at the furrow

and consequently washes out unprotected surface soil with intense energy. Arnhold et al. (2013)

showed a result similar to those of Ruidisch et al. (2013), wherein the ridge tillage with plastic

mulching increased soil erosion in the upland dry crop fields through a model-based study using

Erosion 3D (von Werner, 1995). Arnhold et al. (2014) showed that organic farming was more

effective in preventing soil erosion than conventional farming as organic farming had a higher

vegetative surface cover ratio from leaving more weeds in the crop field. Ali and Reineking

(2016) focused on the vegetation structure of field margins that were located around crop fields.

They demonstrated that field margins with high vegetation density captured more sediment

generated by dry crop fields and consequently reduced more off-site pollution caused by soil

erosion.

Several model-based studies have attempted to identify the optimal methods to mitigate soil

erosion of the Haean catchment by simulating BMP scenarios and evaluating their effectiveness

on sediment yields from the whole Haean catchment. Utilizing the soil and water assessment
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tool (SWAT) (Arnold et al., 1998), Maharjan et al. (2016) investigated the effectiveness of split

fertilization, cover crop cultivation, and a combination of the two for four major dry crops (i.e.,

cabbage, potato, radish, and soybean) on water discharge, nitrate loss, and soil erosion from

each dry crop as well as for the whole Haean catchment. According to the simulation results, the

cover crop cultivation scenario showed remarkable soil erosion reduction efficiency for cabbage,

potato, and radish fields, and a slight reduction efficiency for the soybean field compared to the

baseline scenario with cultivation without cover crops. When cover crop cultivation was applied

to all major dry crop fields, sediment loss from the catchment decreased by 19% compared

to those from the baseline scenario. Jang et al. (2017) also projected BMP scenarios such as

vegetation buffer strip (VFS) and rice straw mulching (RSM) in the Haean catchment using

the SWAT model and demonstrated that applying VFS and RMS on upland agricultural areas

reduced soil erosion by 25.7% and 6.3%, respectively.

Although catchment scale studies have demonstrated the effectiveness of various kinds of

BMPs in mitigating soil erosion in the Haean catchment, the BMPs suggested by these studies

have several limitations for practical application in this catchment. The BMPs that were tested in

the previous studies were based on the assumption that each BMP should be adopted uniformly

to all dry crop fields in the Haean catchment to obtain the expected mitigation result; this would

require faithful fulfillment of all stakeholders in the catchment including farmers and landowners.

However, this is not easy to achieve, as each stakeholder who owns and manages dry crop fields

pursues different interests (Poppenborg and Koellner, 2013). There are other types of BMPs

such as constructing turbid water abatement facilities and riparian buffers at the tail water,

and reforesting crop fields and barren lands considering spatial configurations in the catchment,

which are frequently applied to mitigate the sediment export into the stream (Jeon and Kang,

2010). However, only a few studies have focused on the importance of spatial configurations on

regulating ecosystem services (Chaplin-Kramer et al., 2015, 2016). Chaplin-Kramer et al. (2015)

and Chaplin-Kramer et al. (2016) showed that ecosystem services such as carbon stock and

soil erosion regulation responded non-linearly to spatial relocation of forest to agriculture lands,

which indicated the importance of spatial configurations in ecosystem services and functions.

Previous catchment scale studies performed in the Soyang watershed and Haean catchment

have also overlooked the contribution of forests to catchment scale soil erosion and sediment

yield, even though forest is the dominant land cover type in these regions (Seo et al., 2014, Kim

et al., 2017). According to Meusburger et al. (2013), the annual soil erosion rate in the forested

area of the Haean catchment was much higher than that reported by Pimentel (2006), as most

forest in the Haean catchment is located in the steep mountainous area. Furthermore, Hou et al.
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(2014) demonstrated the impacts of vegetation structures and compositions on soil erosion rate

in forests located on hillslopes (Hou et al., 2014).

1.1.4 Comparison of soil erosion models with the Morgan-Morgan-

Finney model

There are various types of models for projecting soil erosion, which can be categorized as

empirical, process-based, and conceptual according to their model structure. Empirical models

such as the universal soil loss equation (USLE) (Wischmeier and Smith, 1978), revised universal

soil loss equation (RUSLE) (Renard et al., 1991), and modified universal soil loss equation

(MUSLE) (Williams, 1975) are simple combinations of parameters related to soil erosion. As

they have a simple structure that can be easily implemented and demand a moderate amount

of data and computing resources, these models have been frequently utilized for estimating

soil erosion rates at every spatial scale from plot to catchment (Lal, 2001, Morgan et al., 1984,

Morgan, 2001, Merritt et al., 2003, Lilhare et al., 2014). However, as the models are composed of

simple empirical relationships to calculate soil erosion rate of an area, it is not easy to understand

the underlying physical processes that bring out a particular result. Also, due to the empirical

relationships of the models being driven mostly by their place of origin, the models are often not

applicable to other regions with different environmental and LULC conditions (Merritt et al.,

2003, Lilhare et al., 2014, Hu and Flanagan, 2013).

Process-based models such as the water erosion prediction project (WEPP) (Nearing et al.,

1989), Limberg soil erosion model (LISEM) (De Roo et al., 1996), and European soil erosion

model (EUROSEM) (Morgan et al., 1998), on the other hand, calculate soil erosion rate with

definite and elaborated equations based on physical laws (e.g., conservation laws of mass and

momentum) (Merritt et al., 2003, Hu and Flanagan, 2013). Although they have theoretically firm

physical foundations, these models often demand a considerable amount of data and computing

resources for initialization, calibration, and simulation, as they contain various complex equations

involving many parameters. Consequently, process-based models are usually limited to projecting

short-term temporal soil erosion events occurring on relatively small spatial scales such as field-

and plot-levels (Merritt et al., 2003, Lilhare et al., 2014, Hu and Flanagan, 2013).

Conceptual models such as the Morgan–Morgan–Finney (MMF) (Morgan et al., 1984) and the

topography-based hydrological model (TOPMODEL) (Beven and Kirkby, 1979) are considered

to be midway between empirical and process-based soil erosion models, taking advantages of

both types. Conceptual models often simplify the soil erosion phenomenon into a few conceptual
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physical processes. Although these models are basically based on rigorous laws of physics, their

parameters and sub-processes are substituted with simple empirical relationships for the sake

of computational convenience. As a result, conceptual models can be applied to various spatial

scales for simulating surface runoff and soil erosion rates while allowing for an understanding

of underlying processes of soil erosion (Morgan et al., 1984, Morgan, 2001, Lilhare et al., 2014,

Morgan and Duzant, 2008, Devia et al., 2015).

Among the conceptual soil erosion models, the MMF model and its variants (i.e., the re-

vised Morgan–Morgan–Finney (RMMF) (Morgan, 2001) and modified Morgan–Morgan–Finney

(MMMF) (Morgan and Duzant, 2008) models) have been successfully applied for simulating

surface runoff and soil erosion rates in regions with various climate and land use types (Morgan

et al., 1984, Morgan, 2001, Lilhare et al., 2014, De Jong et al., 1999, López-Vicente et al., 2008,

Vieira et al., 2014). The MMF model and its variants calculate the annual soil erosion rate by

comparing the masses of detached surface soil particles suspended in the water of a region with

the sediment transport capacity of surface runoff (Morgan et al., 1984, Morgan, 2001, Vigiak

et al., 2005). In the original MMF model, only splash erosion by raindrop impact was considered

as the primary driver of sediment detachment from the surface, and there were no quantitative

considerations of surface cover and vegetation structures as drivers of sediment detachment

(Morgan et al., 1984, Morgan, 2001). The RMMF model began to take account of sheet and

rill erosion by surface runoff as well as the effect of canopy and ground cover on soil erosion to

estimate the amount of sediment detachment from the surface. In addition, the model took the

inter-connectivity of each area into account, which allowed for explicitly estimating the soil loss

and deposition rate of each area (Morgan, 2001, Vigiak et al., 2005). In the modified version,

empirical parameters representing surface ground conditions and vegetation structures were

substituted for the more physically explicit ones. The model also partitioned water flow into

surface runoff and subsurface interflow, and calculated soil erosion according to each soil particle

size class (e.g., clay, silt, and sand). These modifications allowed the model to consider the

impact of land use change and crop field management practices on soil erosion more rigorously,

as well as to reinforce its physical basis, which brought a more accurate projection of soil erosion

rates of various regions that feature a variety of environments and management types (Lilhare

et al., 2014, Morgan and Duzant, 2008).

The aforementioned characteristics of the MMF model makes it suitable for application to

the Haean catchment to determine the BMPs for soil erosion mitigation. The MMF model allows

evaluation of the impact of the spatial configuration of the catchment on soil erosion as the

model calculates a soil budget explicitly, considering inflow of soil from upslopes. The model is
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also applicable to complex terrain configurations with various vegetation types, including minor

crops and forests whose empirical relationships with soil erosion were not established. As there

are various types of crop fields in the Haean catchment (e.g., rice, potato, cabbage, radish, bean,

etc.), it is preferable to use the physical structure of crops than to parameterize the impacts of

each crop field on soil erosion. Therefore, we can determine the effect of reforestation on soil

redistribution patterns in the catchment.

1.1.5 Spatial distribution of substances and nutrients in the moun-

tainous forest

Forests are the dominant land cover type in the Soyang watershed and are mainly located

in the steep mountainous areas where agricultural development pressure is low (Kim et al.,

2017, Hwang et al., 2008). Mountainous forests provide various ecosystem services (ES) such as

supplying purified fresh water and protecting the surface soil from erosion. In addition, forests

efficiently sequester atmospheric carbon dioxide through photosynthesis and store photosynthetic

products as a form of biomass, an essential energy source for forest ecosystems (Kim et al., 2017,

Millennium Ecosystem Assessment, 2005).

Parts of forest photosynthetic products are left on the forest floor as woody debris (e.g.,

leaves, branch, fruit, bark, bud scale, and flower), which decompose into smaller units of organic

matter and nutrients through animal activity and microbial processes (Harmon et al., 1986,

Choi, 2014). In the unmanaged mountain forest with little anthropogenic disturbance, the woody

debris remains on the forest floor and is washed out by wind or surface runoff strong enough to

carry it. Since the Soyang watershed experiences intensive heavy downpours during the summer

monsoon season, concentrated surface runoff washes out a tremendous amount of soil particles

as well as fresh woody debris and decayed particulate organic matter from the mountain forest,

some of which enters into the aquatic system and harms the quality of the freshwater resources

of the Soyang reservoirs (Choi, 2014). Spatially distributed organic matter and nutrients (e.g.,

nitrogen and phosphorus) from surface runoff of woody debris affect not only the biodiversity

and species composition of the forest and headwater stream ecosystems but also the fresh-water

resource quality of aquatic ecosystems such as rivers and reservoirs (Harmon et al., 1986, Choi,

2014, Ward and Aumen, 1986, Rowland et al., 2017).

Most of the soil erosion models applied to the Soyang watershed were USLE-based models

such as RUSLE and SWAT. These models originally targeted agricultural fields, so they were not

appropriate for steep slopes as they consider woody debris on the forest floor as the stationary
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surface cover protecting against surface soil erosion (Elliot, 2004, Neitsch et al., 2011). As a result,

although the mountain forest is the dominant land cover of the Soyang watershed, previous

studies performed in this region have often ignored the soil erosion impact of the mountain

forest due to its abundant surface woody debris such as leaves (Maharjan et al., 2016, Jang

et al., 2017).

1.1.6 TERRECO project

Studies for this thesis were conducted within the scope of the TERRECO (Complex Terrain

and Ecological Heterogeneity) project. TERRECO was an international research and training

group, which aimed to understand ecological processes and assess ecosystem functions and

services spatially in complex terrain regions. Specifically, the project focused on evaluating

those changes in ecosystem services driven by anthropogenic and environmental changes from

various perspectives such as water quality and quantity, soil erosion, crop and forest production,

and biodiversity. Based on this, the project aimed to provide a framework for understanding

and managing such areas (Kang and Tenhunen, 2010).

In this thesis, we focused on the spatial patterns of soil and soil organic matter, which is

relevant to the soil erosion and water quality of mountainous catchments with complex terrain.

1.1.7 Research objectives

The main objectives of this thesis were to understand the spatial patterns on the landscape

scale of sediment redistribution by soil erosion in forest-dominated mountainous watersheds

with complex terrain configurations and to find ways to mitigate water quality deterioration

due to soil erosion of the Soyang watershed.

For these purposes, we developed a new soil erosion model that was appropriate for the

climate and terrain configurations of the Soyang watershed by modifying the existing Modified

Morgan–Morgan–Finney soil erosion model. We also investigated spatial patterns of soil nutri-

ents in steep mountain forests for a better understanding of soil erosion in the mountainous

forest, which is the dominant land cover of the Soyang watershed.
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1.1.7.1 Development of a soil erosion model for a complex terrain region under a

monsoonal climate regime

The Soyang watershed is affected by an extremely irregular seasonal monsoon climate and

has complex terrain configurations with various LULCs and surface cover conditions. To suggest

optimal mitigation measures for soil erosion in this region, new types of soil erosion models are

needed to consider extremely concentrated rainfall regimes and complex terrain configurations.

For these purposes, we suggested a new soil erosion model, a daily-based Morgan–Morgan–

Finney (DMMF) model, based on the Modified Morgan–Morgan–Finney (MMMF) model with

the following improvements:

(1) conversion of the temporal scale of the model from an annual to a daily basis, which make

it suitable for regions with intensive seasonal rainfall,

(2) inclusion of the concepts of impervious surface covers for reflecting concrete ditches, pave-

ments, and plastic mulching, and

(3) revision of the effective rainfall equation, interflow equation, and equations relevant to the

USLE C-factor in the transport capacity equation.

1.1.7.2 Effect of spatial reconfiguration of landscape on stream sediment load from

an upland agricultural catchment

In this section, we aimed to assess the soil erosion risk of the Haean catchment using the

DMMF model and evaluate the impact of the spatial reconfiguration altering erosion hot spots

into forests on reduction sediment yield into the stream. The detailed objectives were:

(1) determining the applicability of the DMMF model for stream discharge and suspended

sediment in the catchment scale,

(2) estimating the sediment redistribution pattern of the catchment and assessing the soil

erosion risk of the Haean catchment, and

(3) evaluating the effectiveness of the spatial reconfiguration of erosion hot spots into forests

on reducing sediment yield entering into the stream.
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1.1.7.3 Investigating environmental drivers that determine spatial redistribution

patterns of soil nutrients in the mountain forest

We investigated the spatial patterns of nitrogen (N) and phosphorus (P) using high-resolution

light detection and ranging (LiDAR)-derived vegetation and topographical data for understand-

ing soil erosion patterns in the steep mountainous forest. The specific goals of our research

were:

(1) to evaluate the importance of vegetation and topographic parameters derived from LiDAR

on predicting spatial distribution patterns of N and P,

(2) to identify regions with critical soil P contents, and

(3) to test model performance based on different cross-validation strategies to suggest an

optimal model for the spatial distribution pattern predictions of N and P.

1.2 Method and materials

1.2.1 Study areas

The study was performed at two catchments belonging to the Soyang watershed (127.728°

to 128.588° E and 37.688° to 38.500° N), which is located in the north-eastern part of South

Korea (see Fig. 1.1). The Soyang watershed is the upstream region of the Han River basin,

which is the crucial freshwater resource for more than twenty million residents, including the

residents of the Seoul metropolitan area. Therefore, managing its water quality and quantity

to be clean and sustainable is one of the most critical environmental issues in this watershed

(Chang, 2008, 2005, Lee et al., 2017).

The dominant land cover type of the Soyang watershed is the forested ecosystem (83.8%)

with deciduous forests (51.8%), coniferous forests (25.4%) and mixed forests (22.8%) (Kim et al.,

2017, Jeong, 2016). The rest of the regions are intensively managed as dry crop fields (3.8%),

rice paddies (1.6%), and residential areas (1.1%) (Kim et al., 2017). Dry crop fields are mostly

located in the upland agricultural areas (e.g., Haean and Jawoon-ri), which are situated at the

upstream region of the watershed. Residential areas are mostly concentrated in Chuncheon, the

largest city in the Soyang watershed (Kim, 2017, Maharjan et al., 2013).

The second (Chapter 3) and the third (Chapter 4) parts of this study were conducted in the

Haean catchment (see Fig. 1.1c) which is located in the northern part of the Soyang watershed,

bordering North Korea (128.135° E, 38.277° N). The catchment is a bowl-shaped mountainous
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Fig. 1.1. Location of the Soyang watershed and two study sites. (a) Location of the Soyang
watershed in South Korea, (b) topography of the Soyang watershed and two sub-catchments
for this study, (c) topography of the Haean catchment, mountainous catchment with complex
surface configuration, and (d) topography of the forested sub-catchment in Chuncheon

erosion basin with low and flat central areas and a high, steep catchment boundary (339 to

1,321 m above sea level) (Maharjan et al., 2016, Arnhold et al., 2013, Lee, 2009). The unique

bowl shape of the catchment was made by differential erosion of its two different bedrocks

of weathering-resistant gneiss at the higher elevations close to the catchment boundary and

weathering-susceptible granite in the flat central areas (Lee, 2009).

The catchment has two distinct seasonal climates: a hot and humid summer affected by

the North Pacific high, and a cold and dry winter affected by the Siberian high (Shope et al.,

2014, Park et al., 2011). The average annual temperature from 2009 to 2018 was 8.7 °C with a

range of −28 to 35 °C. The average annual precipitation from 2009 and 2018 was 1,272.3 mm,

and approximately 61.3% of the rainfall is concentrated in the summer monsoon season from

June to August (Korea Meteorological Administration, 2019). Similar to the Soyang watershed,

the dominant land cover type of the Haean catchment is forest (58%), which ranges from the

upper hillslope to the summit of the mountain surrounding the catchment. However, unlike

the Soyang watershed, the catchment has an extremely high proportion of agricultural fields

(30%), comprised mostly of dry crop fields (22%) cultivated in the steep upper hillslope and rice

paddies (8%) cultivated in the lower flat center. The rest of the area is covered by semi-natural

vegetation and shrub (9%), bare surface (5%), and residential areas (3%) (Seo et al., 2014).
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The fourth part of this study was performed in the small catchment of Chuncheon (see

Fig. 1.1d), located in the downstream region of the Soyang watershed (127.841° E, 37.993° N).

This catchment is a small mountain forest catchment with a size of 9.84 km2. The elevation

of the catchment ranges from 320 to 868 m, including various steep slopes over 45° caused by

Quaternary tectonic uplift (Lee, 2004). The bedrock of this area is comprised of banded and

granitic gneiss formed mostly in the Paleoproterozoic period (Chough, 2013). The average annual

temperature of this catchment from 2009 to 2018 was 10.9 °C with a range of −24 to 40 °C. The

average annual precipitation of this catchment between 2009 and 2018 was 1,349.5 mm, with

62.1% concentrated in the summer monsoon season from June to August (Korea Meteorological

Administration, 2019). The catchment belongs to the National Forest managed by Korea Forest

Service (KFS) and is dominated by Mongolian oak (Quercus mongolica), Korean pine (Pinus

koraiensis), Japanese red pine (Pinus densiflora), and Japanese larch (Larix kaempferi) (Jeong

et al., 2017).

1.2.2 Development of a soil erosion model for a complex terrain

region under a monsoonal climate regime (Chapters 2 & 3)

The main structure of the DMMF model can be separated into two phases: the hydrological

phase and the sediment phase. The hydrological phase calculates the amount of surface runoff,

which is the key factor determining the amount of soil particles detached from a region. As the

model considers the interconnectivity of each region from the upslopes, the model can estimate

the net water discharge and net soil budget of the region.

The schematic hydrological phase is described in Fig. 1.2. Surface runoff is generated when

the amount of surface water inflow into a region exceeds the surface water infiltration capacity

(SWc, mm). The amount of surface runoff generated in a region (Q, mm) of size A (m2) is

the sum of the effective rainfall (Reff , mm) and surface water inflow from upslope areas (Qin,

L) minus the amount of water infiltration into the soil (SWc). In the soil layer, subsurface

water from upslope areas (IFin, L) flows into a region. The subsurface water inflows (IFout) and

existing soil water in the region (SWinit, mm) determine water infiltration capacity (SWc). After

water infiltration into the soil layer, soil water exceeding the soil water at field capacity (SWfc,

mm) flows out from a region. Some part of the surface and soil water is lost to evapotranspiration

(ET , mm), while the rest flows to downslope areas as surface (Qout, L) and subsurface water

(IFout, L).

The model estimates sediment balance in the sediment phase, as described in Fig. 1.3. In
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Fig. 1.2. Schematic hydrological phase of the model, adapted from Choi et al. (2017).
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Fig. 1.3. Schematic sediment phase of the model, adapted from Choi et al. (2017).

the model, the amount of soil loss from a region (SL, kg/m2) is determined by comparing the

transport capacity of runoff (TC, kg/m2) with available sediment for transport (G, kg/m2).

The first step of the sediment phase is to calculate the amount of sediment delivered to surface
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runoff. In this step, the sediment is delivered to and suspended in the surface water (SS, kg/m2)

of the region from two main sources: internally-originated detached soil particles from direct

throughfall (F , kg/m2) and surface runoff (H, kg/m2), and external sediment inputs from

upslope areas (SLin, kg). A portion of suspended sediments (DEP ) in the surface runoff then

settles down due to gravity, which is called gravitational deposition. The rest of the sediments

(G) are still suspended in the surface runoff, which can be transported to downslope areas.

When the transport capacity of runoff (TC) is greater than the available sediment for transport

(G), all available sediment for transport is washed out to downslope areas. Otherwise, only a

portion of available sediment for transport (G), equal to the transport capacity of runoff (TC),

can move to downslope areas. The amount of sediment lost from a region is the amount of soil

loss from the region (SL).

1.2.3 Effect of spatial reconfiguration of landscape on reducing sed-

iment yield from the catchment (Chapter 4)

We performed our study in the Haean catchment to test the impact of spatial reconfiguration

of a landscape on the reduction of the sediment yield entering a stream. The Haean catchment

is a mountainous erosion basin with a complex surface configuration comprising forests, semi-

natural areas, rice paddies, residential areas, paved roads, and dry crop fields on the hillslope

(Seo et al., 2014). The catchment is an intensive research area of the TERRECO project, where

several weather stations and hydrological measurement facilities were installed to measure

meteorological (e.g., temperature and rainfall) and hydrological data (e.g., stream discharge and

suspended sediments) accurately (Kang and Tenhunen, 2010). Land use and land cover (LULC)

types and soil characteristics for each representative LULC-type of the catchment were well-

established (Seo et al., 2014, Shope et al., 2014). Having complex surface terrain configurations

with various measured data for an initial model run and calibration and validation of the soil

erosion model, the Haean catchment was considered suitable for the purpose of our study.

In the catchment, we selected three hydrological points for calibration, validation, and simu-

lation of the model. The first hydrological point was in the mountainous forest site, the second

covered the dry crop fields on the hillslope areas, and the last one covered larger areas that

included areas that first and second hydrological points covered. Measured stream discharge

and suspended sediment data from the first and the second hydrological points were used to

calibrate the parameters while those from the third point were used for model validation.

We set the initial value of each parameter based on the existing data set measured from
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the Haean catchment as well as literature reviews of the characteristics of crops and field

management methods (see Table. 4.1). After setting the initial parameters, we selected and

Table 1.1. Input parameters of the daily based Morgan–Morgan–Finney (DMMF) model and
sources of initial parameter settings (adapted from Table 1 of Choi et al. (2017))

Type Parameter Description Source

Topography S Slope angle [rad]
res Grid size of a raster map [m] Digital Elevation Model [30 m]

Climate
R Daily rainfall [mm/d]
RI Mean rainfall intensity of a day [mm/h] Haean weather station network

ET Daily evapotranspiration [mm/d] MODIS Evapotranspiration (ORNL DAAC, 2008)

Soil

Pc Proportion of clay in the surface soil
Pz Proportion of silt in the surface soil
Ps Proportion of sand in the surface soil
SD Soil depth [m]
θinit Initial soil water content [vol/vol]
θsat Saturated water content [vol/vol]
θfc Soil water content at field capacity [vol/vol]
K Saturated soil lateral hydraulic conductivity [m/d]

TERRECO field survey in 2009

DKc Detachability of clay particles by rainfall [g/J]
DKz Detachability of silt particles by rainfall [g/J]
DKs Detachability of sand particles by rainfall [g/J]
DRc Detachability of clay particles by surface runoff [g/mm]
DRz Detachability of silt particles by surface runoff [g/mm]
DRs Detachability of sand particles by surface runoff [g/mm]

Morgan and Duzant (2008)

LULC

PI Area proportion of the permanent interception of rainfall
IMP Area proportion of the impervious ground cover
GC Area proportion of the pervious ground cover
CC Area proportion of the canopy cover of the soil surface
PH Average height of vegetation or crop cover [m]
D Average diameter of individual plant elements at the surface [m]
NV Number of individual plant elements per unit area [number/m2]
da Typical flow depth of surface runoff [m]
n Manning’s roughness coefficient of the soil surface [s/m1/3]

Literature review (Morgan, 2005,
Arnhold et al., 2014, Morgan and
Duzant, 2008, Shope et al., 2014,
Rural Development Administration
of South Korea, 2018) and MODIS
NDVI (Didan, 2015, ORNL DAAC,
2017)

calculated the sensitivities of the parameters with high uncertainty: soil hydraulic (θsat, θfc,

and K), soil detachability (DKc,z,s and DRc,z,s), and LULC (PI, IMP , GC, CC, PH, D, NV ,

d, and n) parameters, none of which were measured or represented by field samples. Using

the Sobol’ method (Sobol’, 1993), we tested the relative sensitivity of the selected parameters

on model outputs for surface runoff and sediment yield into the stream. The Sobol’ method

is a variance-based sensitivity analysis technique that is widely used in environmental and

hydrological modeling such as SWAT and TOPMODEL (Nossent et al., 2011, Qi et al., 2013).

As the method calculates the importance of a parameter considering its combined impacts with

other parameters (i.e., Sobol’ total index), it was deemed suitable for non-linear and non-additive

models with many parameters (Nossent et al., 2011, Saltelli and Annoni, 2010).

Important parameters of the Sobol’ total index higher than 0.5 were adjusted to find the

optimal combination of the parameter set, which made the model outputs match well with the

measured stream discharge and suspended sediments from each hydrological point. We applied

the differential evolution (DE) (Storn and Price, 1997) optimization method for parameter

calibration, setting the average Nash-Sutcliffe efficiency coefficient (NSE) (Nash and Sutcliffe,
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1970) for both stream discharge and suspended sediments as a goal function. DE is a heuristic

optimization method with an evolution strategy for finding global extreme values (Storn and

Price, 1997, Price et al., 2006). As the method requires few prerequisites, DE can be applied

to non-differential, nonlinear, and multi-modal models, including hydrological models such as

SWAT (Zheng et al., 2015). As the first hydrological point was covered only by forest, we could

adjust forest-related parameters such as steep forest soil characteristics and forest vegetation

structure. At the second hydrological point, we could adjust the parameters of the moderate-to-

steep and flat, dry field soil and vegetation structures such as semi-natural field, rice, and dry

crops. Then, applying the optimal parameter set, we evaluated the model performance at the

third hydrological point covering the steep mountain forest area, moderate-to-steep dry crop

fields, and flat rice paddy and residential areas.

Based on the validated model outputs, we simulated the annual sediment redistribution

patterns and assessed the soil erosion risk of the entire Haean catchment. To evaluate the

impact of the spatial reconfiguration on the reduction of the sediment yield entering into the

stream, we altered the erosion hot spots into forests and assessed the sediment yield from

the catchment. We set the current sediment yield entering into the stream as the baseline

conditions and then compared those from model outputs projecting spatial reconfiguration

scenarios of altering one percent of erosion hot spots into forests in the order from the area

with the most severe soil erosion risk to that of the least severe soil erosion risk. In addition, to

investigate effective ways to reduce sediment yield entering into the stream, we repeated the

above-mentioned procedure for three different types of soil erosion hot spots according to the

criteria of net soil budget, sediment input, and sediment output of the area.

1.2.4 Effect of topography and vegetation structure on spatial pat-

terns of soil nutrients (Chapter 5)

To predict spatial patterns of N and P as well as identify important environmental drivers

affecting these patterns, we selected a small mountain forest catchment (9.84 km2) of Chuncheon

located in the downstream area of the Soyang watershed (see Fig. 1.1c). To ascertain the effect

of topography and vegetation structures on soil N and P in the organic layer and A horizon,

we measured the soil N and P concentrations and analyzed the topography and vegetation

structure utilizing LiDAR point data. First, we collected soil samples from the organic layer and

A horizon at 91 sampling points in 2014. To efficiently obtain unbiased soil samples of at least

one per a quantile of each environmental factor for predicting spatial patterns of soil nutrients,
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we selected sampling points using a conditional Latin hypercube sampling method, which is

a stratified random sampling that provides full coverage of the range of each variable, while

preserves the distribution and multivariate correlation of the multivariate space (Minasny and

McBratney, 2006). Collected organic soil samples were oven-dried, and mineral soil samples from

the A horizon were air-dried and sieved under 2 mm. We preprocessed the organic soil samples

and measured P and N contents utilizing an inductively-coupled plasma mass spectrometry

(ICP) and elemental analyzer, respectively. After measuring the P and N contents of each soil

sample, we converted nutrient contents into mass and calculated N/P ratio based on mass.

Environmental predictors were derived from detailed three-dimensional (3D) point-cloud

data scanned by airborne LiDAR. We created a digital elevation model (DEM), a digital terrain

model (DTM), and a digital surface model (DSM) from a 3D point-cloud generated by airborne

LiDAR. In addition, we used the LiDAR-derived average first return intensity of reflected light

(Hfiravg) of an area for forest types and physiological characteristics (Ørka et al., 2009). Based

on the LiDAR-driven DEM, we calculated elevation (ELEV), slope (SLO) (Zevenbergen and

Thorne, 1987), catchment area (CA) (Freeman, 1991), and topographical wetness index (STWI)

(Böhner et al., 2002) from SAGA (Conrad et al., 2015), and calculated the surface curvature

of 19 × 19 cells around the focusing area (CUR19) from the CURV3 program (Park et al.,

2001). Based on the LiDAR-driven DTM and DSM, we calculated vegetation structure metrics

for maximum tree height (Hmax), canopy cover percentage (Hccp), and standard deviation of

tree heights (Hstd). We created the composite values of forest canopy and height (Hch), which

is the canopy cover percentage (Hccp) multiplied by maximum height (Hmax) as an indicator

of approximate vegetation volume. In addition to the LiDAR-driven data, we also used the

normalized difference vegetation index (NDVI) which is calculated from the Kompsat-2 satellite

image obtained on 11th October 2014 (Jensen, 2015, Thenkabail et al., 2011).

To determine the relationships between soil nutrient concentration and environmental pre-

dictors such as topography and vegetation structures, we developed a model to predict the

soil concentration of each nutrient from environmental predictors utilizing the random forest

(RF) method, an ensemble learning method that suggests an optimized model by constructing a

multitude of regression trees and then averaging individual trees (Breiman, 2001). The method

is applicable to predict a complicated non-linear relationships between responding variables and

predictors, and also has better interpretability than other machine learning methods by pro-

viding the relative importance of each predictor in the result; thus, this technique is frequently

used for digital soil mapping (Grimm et al., 2008, Wiesmeier et al., 2011, Kuhn and Johnson,

2013, Strobl et al., 2009, Kampichler et al., 2010).



CHAPTER 1. SYNOPSIS 18

Predictor selection can be a crucial factor in determining model performance (Miller et al.,

2015, Brungard et al., 2015, Poggio et al., 2013). Recursive feature elimination (RFE), a backward

predictor selection method, can be used with RF for selecting the optimal number of important

predictors essential for model construction (Miller et al., 2015). Predictor selection procedures

using RFE and RF consist of running RF to assess the initial importance of each predictor, and

removing predictors one-by-one in increasing order of importance iteratively until the optimal

predictors essential for the model obtained (Darst et al., 2018).

To assess model performance, we used k-fold cross-validation (CV), which randomly partitions

a given dataset into k subsets and then uses (k-1) subsets as a training dataset, leaving one

subset as a validation dataset. We tried 2-, 5-, 10-, and 20-fold as well as a leave-one-out (LOO)

CV to assess model performance utilizing the coefficient of determination (R2) and root mean

square error (RMSE) as model performance criteria.

1.3 Results and discussion

1.3.1 Development of a soil erosion model for a complex terrain

region under a monsoonal climate regime (Chapters 2 & 3)

We tested the performance of the DMMF model by applying it to two dry crop fields in

the Haean catchment and comparing the surface runoff and soil erosion results with those from

Erosion 3D (von Werner, 1995) carried out per Arnhold et al. (2013). The model results showed

reasonable performance and similar soil redistribution patterns when compared to the results

from Erosion 3D.

Based on the result, we can conclude that the corrections and modifications made on the

MMMF model were appropriate with regard to improving the model for application in complex

surface configurations with intensive rainfall regimes. In addition, the DMMF can be useful in

establishing soil and water conservation measures in intensively used agricultural lands with

complex surface configurations by estimating spatiotemporal runoff and sediment redistribution

and by identifying erosion and deposition hot spots under varying conditions.
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1.3.2 Effect of spatial reconfiguration of landscape on reducing sed-

iment yield from the catchment (Chapter 4)

According to the result, the model showed high sensitivity to soil hydraulic parameters such

as soil water content at field capacity, and saturated soil hydraulic conductivity, and vegetation

and surface structures such as permanent interception of rainfall and ground cover of the surface.

From the calibration and validation steps, the model showed relatively good performance in

the mountain forest area; however, as more agricultural and artificial structures were included,

the performance of the model decreased. The model showed relatively good performance in

estimating stream discharge but relatively poor performance in estimating suspended sediments

in the stream. The poor model performance in estimating suspended sediments could be analyzed

from two perspectives: the discrepancy in data types between field measured data and output

from the DMMF model, and the existence of manmade culvert systems and sediment reduction

facilities.

Suspended sediments at each hydrological point measured sediment concentration, which is

the sediment yield from the contribution area subtracted by stream deposited sediments; on

the other hand, the DMMF model did not consider sediment processes in the stream. As the

sediment process in the stream highly depends on the amount of stream discharge, the errors

between observed and simulated data can be larger for the longer stream networks. Also, the

manmade culvert system and sediment reduction facilities such as debris barriers slowed down

the stream flow, which increased deposition in the stream. As the deposited sediments also

floated in the stream discharge caused by concentrated rainfall, the facilities could affect model

performance for sediment yield to the stream.

Based on the optimal parameters from calibration and validation, we estimated the annual

sediment redistribution patterns and assessed the soil erosion risks of the entire catchment. The

result showed severe soil erosion in dry crop fields on hillslope areas, and relatively tolerable soil

erosion in the rice paddies and residential areas located in low, flat catchment center. Forests

showed tolerable soil erosion, though they were mostly located on the very steep mountain areas.

Simulation results obtained by altering soil erosion hot spots into erosion-tolerable forests

confirmed the effectiveness of spatial reconfiguration of landscapes on the reduction of the

sediment yield entering into the stream. Altering only 3% of the erosion hot spots reduced the

sediment yields entering the stream by approximately 10%. Furthermore, changing 10% of the

erosion hot spots reduced approximately 50% of the sediment yield from the catchment.

In this study, we assessed the soil erosion risk of Haean catchment spatially by explicitly
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projecting sediment redistribution patterns using the DMMF model. We also identified the

effect of spatial reconfiguration of erosion-prone areas into erosion tolerable areas on reducing

sediment yields entering the stream. Although previous studies have suggested various efficient

BMPs to reduce sediment yields from the catchment, their BMPs often require compliance of

stakeholders, which may not be easy and takes much time for stakeholder compliance (Maharjan

et al., 2016, Jang et al., 2017). On the other hand, we recommend the spatial reconfiguration

approach, which often reduces the number of stakeholders in mitigation measures. Therefore, we

can obtain a desired sediment yield reduction from the catchment through the complementary

use of two BMP approaches.

1.3.3 Effect of topography and vegetation structure on spatial pat-

terns of soil nutrients (Chapter 5)

According to the soil sample analysis, the concentration of N in the organic layer (12,245 mg/kg)

was approximately four times those in the A horizon (2,990 mg/kg). The concentration of P in

the organic layer (624 mg/kg) was approximately one-and-a-half times those in the A horizon

(389 mg/kg). From the results, it can be seen that the N concentration had a high variance

between each soil layer; in contrast, the variance between soil layers was relatively low for the P

concentration. We also analyzed the variance in the soil nutrients of each layer. In the organic

layer, the concentration of P (Po) showed relatively higher variability than N (No) based on

the coefficient of variation (CoV). This result indicated that the N/P ratios in the organic layer

could be highly dependent on the concentration of Po. In the A horizon, the concentrations of

N (Na) and P (Pa) showed high variances, which were greater than those in the organic layer.

In addition, the average N/P ratio in the A horizon were higher than that of the organic layers.

When we assessed model performance from various types of k-fold CV schemes, the P

concentration prediction model for the organic layer and A horizon showed relatively good

performance; however, the N concentration prediction model in the organic layer and A horizon

showed relatively poor performances. Due to the poor performance of the N prediction model

in the organic layer, the N/P prediction model showed poor performance as the N/P ratio was

determined by both N and P.

From RF and RFE procedures, we identified the important environmental drivers for the

spatial patterns of each nutrient and the ratio of nutrients in the soil. Concentrations of N in

the soil showed a high correlation with various topographic and vegetation predictors, while

concentrations of P showed significant relationships with only topographic predictors. Also, the
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N/P ratio in the organic layer demonstrated a higher correlation with vegetation predictors than

that in the mineral soil layer. The model for predicting spatial distribution of No required not only

topographic predictors such as elevation (ELEV), curvature (CURV19), and topographic wetness

index (STWI), but also vegetation predictors such as forest type and physiological characteristics

(Hfiravg), standard deviation of vegetation height (Hstd), and maximum vegetation height of a

cell (Hmax). However, only topographic predictors such as ELEV and CURV19 were required

to predict spatial patterns of concentrations of Po, Pa, and Na. For predicting N/P ratio in

the organic layer, topographic predictors such as CURV19, catchment area (CA), and ELEV

were selected for the model, and vegetation predictors such as standard deviation of tree heights

(Hstd), maximum vegetation height (Hmax), and forest canopy and height (Hch) were selected.

Topographic factors such as CURV19, CA, ELEV, and topographic wetness index (STWI), and

normalized difference vegetation index (NDVI) were required for predicting N/P ratio in the A

horizon.

From the predicted spatial patterns of N, P, and N/P ratio from the models, P contents

were markedly higher in the lower slopes than the upper slopes and N/P ratio showed high

values on the convex upper slope. Standard deviations of P and N/P ratio in the organic layer

were higher at lower elevations and on the valley floor. The standard deviation of P in mineral

soil layer was higher at the upper part of the catchment.

Our results showed that the soil contents of N in the organic layer had a strong relation-

ship with various topographic and vegetation factors such as elevation, NDVI, vegetation type,

curvature, topographic wetness index, and structural diversity and maximum height of vege-

tation. The soil contents of N in the mineral soil layer showed a strong relationship only with

topographic factors such as elevation and curvature and had weak relationships with vegeta-

tion structures. The results were generally in accordance with previous studies that reported

strong correlation of soil nitrogen content with topographic predictors (e.g., elevation (Bedison

and Johnson, 2009, Wang et al., 2013, Peng et al., 2013, Kunkel et al., 2011), and catchment

area and topographic wetness index (Johnson et al., 2000, Seibert et al., 2007)) and vegetation

predictors (e.g., vegetation type, structure (Bedison and Johnson, 2009, Vesterdal et al., 2008,

Zhang et al., 2010) and NDVI (Kim et al., 2016, Kunkel et al., 2011, Sumfleth and Duttmann,

2008)). Several studies ((Kim et al., 2016, Kunkel et al., 2011, Sumfleth and Duttmann, 2008))

have reported on the strong correlations between Na and NDVI, while we found significantly

strong relationships between No and NDVI; we identified only marginal relationships between

Na and NDVI. Although previous studies found that topographic wetness index (TWI) and

catchment area (CA) affects N contents in soil, we only found significant relationships between
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STWI and Na (Johnson et al., 2000, Seibert et al., 2007). According to our results, P contents

in the soil were mainly determined by elevation (ELEV) and surface curvature (CURV19). The

spatial patterns of P from the model demonstrated that P enrichment was found in the valleys

near mountain-tops while low P content was found on convex slopes and valleys located in the

lower areas, which were well-matched with the spatial patterns of soil P contents from other

study site (Smeck, 1985). The spatial patterns of P at the study site seemed to be formed by a

long-term periodic soil erosion process. Because the study site was located in the steep mountain

area affected by periodic seasonal heavy rainfall, the area has suffered from severe soil erosion

(Jeong et al., 2012, Jung et al., 2012). As P tends to adhere easily to soil particles, P content

was relatively low on the mountain slope area, which was vulnerable to soil erosion. On the

other hand, P content was relatively high on the mountain top, where less erosion occurred. P

content was also high at the lower slope due to P inputs delivered from upslope areas along

with soil particles. The vegetation in the area with high P content absorbed more P from the

soil and contributed high P back to the soil through foliage and vegetation litter that can back

up high P content in the organic layer. The spatial pattern of the N/P ratio from the organic

layer and A horizon were similar to the reversed image of the spatial pattern of P content, which

indicate that N/P ratio in both soil layers are strongly affected by soil P contents in the steep

forest mountain area. According to the spatial variations of the two soil nutrient contents, the

results came from the small spatial variation in soil N compared to that of soil P. As the lower

N/P ratio of tree leaf in the P-enriched areas also affected the N/P ratio of the organic layer,

the spatial patterns of N/P ratio in the organic layer showed a stronger correlation with those

of P in the organic layer. Our results were similar to those reported by Uriarte et al. (2015),

wherein soil N/P ratio was closely related to the N/P ratio of leaf litter and was determined

by topography in a steep tropical mountainous forest with heavy rainfall. After verifying k-fold

cross-validation schemes through changing k values, we found an inverse relationship between

the predictive power of the model and variance of the predictive power, which was a so-called

bias-variance trade-off (Hastie et al., 2009). According to our test, increased k values led to the

increased mean predictive power of the model from RF, but also to the decreased variance of the

predictive power. The higher predictive power from the larger k was caused by the larger size of

the training set as the predictive power of the learning methods were often determined by the

size of the training set. This was similar to the result of Park and Vlek (2002), who reported that

prediction accuracy increased with increasing numbers of soil samples the for training dataset.

Although there were enough data for calibration of the model to secure reasonable predictive

power, the larger size training set often led to an overfitting of the model (Remesan and Mathew,
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2015). In the model test, we also found notable bias-variance trade-offs and confirmed efficiency

of the 10-fold CV since the scheme had moderate levels of model error bias and variance as

recommended in various studies (Remesan and Mathew, 2015, James et al., 2013, Cichosz, 2015,

Feigelson and Babu, 2012, Malley et al., 2011, Ambroise and McLachlan, 2002).

1.4 Outlook

The Soyang watershed has been suffering from periodic soil erosion from upland agricultural

areas and vegetative woody debris inflows from mountain forests due to its erosion-prone

topography of steep slopes and occasional intensive rainfall from the seasonal monsoon climate.

The problem is worsening owing to upland agricultural expansion caused by economic profit

and a strong, concentrated rainfall pattern due to climate change.

Understanding the spatial redistribution of soil and soil nutrients is essential for mitigating

the problems of erosion as well as managing the productivity of the terrestrial ecosystem and

the quality of the aquatic ecosystem sustainably. For a better understanding of the spatial

redistribution of soil and soil nutrients, we created modified soil erosion models adapted to the

area and its complex surface configuration under a seasonal monsoon climate. Also, utilizing the

soil erosion model, we simulated spatial redistribution of soils in Haean, the upland agricultural

mountainous catchment, and suggested soil erosion mitigation measures considering the spatial

context of the landscape by converting erosion hot spots into erosion-resistant forest. Although

soil erosion was not so severe in the forest, forest is the dominant land cover in the Soyang

watershed, covering approximately 84% of the entire watershed, and is also the main source

of natural suspended solids, such as woody debris and particulate organic matter, flowing into

streams. Therefore, an understanding is needed of the spatial distribution pattern of soil nutrients

and the environmental drivers that determine these patterns in the mountain forested areas

for estimating the spatial redistribution process of matter in these areas. To understand the

spatial redistribution process of matters in the mountain forested areas, we ascertain the spatial

patterns of soil nutrients and selected the important environmental drivers that determine

spatial patterns of soil nutrients and their ratios in the steep, mountainous forested area by

utilizing sophisticated topographic and vegetative factors extracted from LiDAR point-cloud

data. The spatial distribution of N in the organic layers could be used as indicators of the spatial

redistribution of woody debris and particulate organic matter originating from vegetation, while

that of P could be an indicator for soil redistribution.

We estimated soil erosion in the upland agricultural catchment and also found clues as to the
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spatial redistribution patterns of soil and soil nutrients in the mountainous forested area through

the spatial patterns of soil nutrients and their environmental drivers. Choi (2014) reported that a

significant amount of fine and coarse woody debris (WD) and particulate organic matter (POM)

exported from the mountainous forested catchment entered the streams and reservoirs when

concentrated rainfall events occurred. WDs and POMs originating from forested mountains

were deposited in the streams and reservoirs and often produced methane, a potent greenhouse

gases, through anaerobic oxygen deprivation condition in the sediment layer under water. Also,

deposited WDs and POMs in the water degraded water quality by providing dissolved organic

matter (DOM) and P that caused eutrophication (Choi, 2014, Sorrell and Boon, 1994, Wood and

Armitage, 1997, Baker et al., 2011, Extence et al., 2011, Flores et al., 2013). WDs such as litter

often affected the soil erosion process as they played a significant role as a surface cover that

protected surface from soil erosion. However, there have only been a few studies estimating the

spatial behavior of contaminants integrating vegetative WD, POM, and inorganic soil sediments

from a mountainous catchment (Choi, 2014).

For the sustainable management of a water system considering contaminant inflow from

terrestrial ecosystems with complex terrain configurations, an integrated model to project spatial

redistribution of WDs, POMs, and soil particles is required in this area. Based on the results of

the current study performed in the Soyang watershed, we plan to develop an integrated material

redistribution model to simulate the spatial redistribution of materials including WDs, POMs

and soil particles. We conceptualize the fine and coarse WDs and POMs as materials and take

these materials to be soil particles as described in the DMMF model. The differences between

WDs and other materials are that WDs are immobile until the depth of the surface runoff are

deeper than the critical floating depth of the WDs (Haga et al., 2002). To integrate WDs and

POMs into the model, we need empirical relationships between topographic conditions and

material characteristics. First, the amount of floating POMs and WDs are required to calculate

the inflow of materials into the surface runoff. Second, characteristics of floating POMs and

WDs in the flowing runoff such as lateral velocity of POMs and WDs and gravitational falling

velocity in the water are required. To create quantitative empirical values for each material, we

will perform laboratory-based and in-situ experiments to quantify the amount of floating POMs

and WDs for various surface water levels and slope conditions. Third, as POMs and WDs are

relatively non-static in the field as they are removable in certain locations, we should modify the

model for surface POMs and WDs to be updated at daily based. Fourth, in a forest-dominated

catchment having simple land cover, we will project and validate the model with the data

sampled at the surface and in the stream. Fifth, after validation, we will project the model in a
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catchment with complex terrain configurations that contributes large volumes of organic and

inorganic matter into a stream, and devise optimal measures to mitigate contaminants entering

the stream.

1.5 Concluding remarks

The Soyang watershed is an important freshwater resource for almost half of the South

Korean population. However, every monsoon season, this area suffers from periodic water

quality deterioration owing to the occurrence of soil erosion in upland agricultural soil and

forest oriented organic matter such as fine and coarse woody debris. Owing to the complex

surface configuration of this area, it is challenging to design optimal measures for sustainable

water management.

We devised a soil erosion model that is suitable for areas with complex terrain configurations

under a seasonal monsoon climate. Utilizing this model, we estimated the amount of sediment

yield from Haean catchment, one of the important sediment contributors to the Soyang watershed.

Also, we evaluated the effectiveness of spatial reconfiguration of the landscape through converting

erosion hot spots into forest and identified the sediment yield reduction efficiency of the spatial

reconfiguration. According to the result, we demonstrated that spatial reconfiguration of the

landscape could bring a synergy of sediment yield reduction with the BMP recommended for

each agricultural area. We also investigated the spatial distribution of soil nutrients in the steep

forested mountain area to understand the important environmental predictors affecting spatial

redistribution of soil nutrients, utilizing detailed topographical and vegetation structural data.

We can understand the spatial redistribution process of soil nutrients and related vegetative

organic matter from the spatial patterns of soil nutrients.

Even though soil particles and organic matter from forests can degrade water quality, no

studies or tools have been applied for the quantitative estimation of the transfer of materials,

including both soil particles and organic matter, from terrestrial to aquatic ecosystems. Further

study of woody debris and particulate organic matter transportation, and modified models

integrating aforementioned organic matter transportation with soil erosion, should be helpful

for the sustainable management of water in this area.
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1.6 List of manuscripts and specification of individual

contributions

This thesis contains four different manuscripts. The first manuscript (Chapter 2) was sub-

mitted to Earth surface processes and land forms and rejected, and is in preparation to be

re-submitted to the same journal. The second manuscript (Chapter 3) was submitted to Water

and published in 2017. The third manuscript (Chapter 4) was submitted to Water and published

in 2019. The fourth manuscript (Chapter 5) was submitted to Plos One and published in 2017.

The following list specifies the contributions of the individual authors to each manuscript.

Manuscript 1 (Chapter 2)

Authors: Kwanghun Choi, Bernd Huwe, Björn Reineking

Title: Commentary on “Modified MMF (Morgan–Morgan–Finney) model

for evaluating effects of crops and vegetation cover on soil erosion”

by Morgan and Duzant (2008)

Status: Published e-prints on arxiv and in preparation for publication

Contributions:

K. Choi: 70% (concepts, analysis, interpretation, discussion, and manuscript

preparation)

B. Huwe: 10% (concepts, discussion of results, and contribution to manuscript

preparation)

B. Reineking: 20% (concepts, discussion of results, and contribution to manuscript

preparation)

Manuscript 2 (Chapter 3)

Authors: Kwanghun Choi, Sebastian Arnhold, Bernd Huwe, Björn Reineking

Title: Daily Based Morgan–Morgan–Finney (DMMF) Model: A Spatially

Distributed Conceptual Soil Erosion Model to Simulate Complex

Soil Surface Configurations

Status: Published in 2017

Journal: Water

Contributions:
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K. Choi: 60% (concepts, analysis, interpretation, discussion, and manuscript

preparation)

S. Arnhold: 15% (concepts, analysis, interpretation, discussion, and contribution

to manuscript preparation)

B. Huwe: 10% (concepts, discussion of results, and contribution to manuscript

preparation)

B. Reineking: 15% (concepts, discussion of results, and contribution to manuscript

preparation)

Manuscript 3 (Chapter 4)

Authors: Kwanghun Choi, Ganga Ram Maharjan, Björn Reineking

Title: Evaluating the Effectiveness of Spatially Reconfiguring Erosion Hot

Spots to Reduce Stream Sediment Load in an Upland Agricultural

Catchment of South Korea

Status: Published in 2019

Journal: Water

Contributions:

K. Choi: 70% (concepts, analysis, interpretation, discussion, and manuscript

preparation)

G. R. Maharjan: 10% (concepts, discussion of results, and contribution to manuscript

preparation)

B. Reineking: 20% (concepts, discussion of results, and contribution to manuscript

preparation)

Manuscript 4 (Chapter 5)

Authors: Gwanyong Jeong, Kwanghun Choi, Marie Spohn, Soo Jin Park,

Bernd Huwe, Mareike Ließ

Title: Environmental drivers of spatial patterns of topsoil nitrogen and

phosphorus under monsoon conditions in a complex terrain of South

Korea

Status: Published in 2017

Journal: PLOS ONE
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Contributions:

G. Jeong: 60% (concepts, field work, data analysis, interpretation, discussion,

and manuscript preparation)

K. Choi: 15% (concepts, field work, data analysis, interpretation, discussion,

and contribution to manuscript preparation)

M. Spohn: 5% (concepts, discussion of results, and contribution to manuscript

preparation)

S. Park: 5% (concepts, discussion of results, and contribution to manuscript

preparation)

B. Huwe: 5% (concepts, discussion of results, and contribution to manuscript

preparation)

M. Ließ: 10% (concepts, discussion of results, and contribution to manuscript

preparation)

References

Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006,

8, 119–137. doi:10.1007/s10668-005-1262-8.

Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz,

L.; Fitton, L.; Saffouri, R.; Blair, R. Environmental and economic costs of soil erosion and

conservation benefits. Science 1995, 267, 1117–1122. doi:10.1126/science.267.5201.1117.

Morgan, R.P.C. Soil erosion and conservation, third ed.; Blackwell Publishing: Malden, MA,

2005.

Pimentel, D.; Kounang, N. Ecology of soil erosion in ecosystems. Ecosystems 1998, 1, 416–426.

doi:10.1007/s100219900035.

Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. doi:10.1002/ldr.472.

Kim, K.; Kim, B.; Knorr, K.H.; Eum, J.; Choi, Y.; Jung, S.; Peiffer, S. Potential effects of

sediment processes on water quality of an artificial reservoir in the Asian monsoon region.

Inland Waters 2016, 6, 423–435. doi:10.1080/IW-6.3.852.

Maharjan, G.R.; Ruidisch,M.; Shope, C.L.; Choi, K.; Huwe, B.; Kim, S.J.; Tenhunen, J.; Arnhold,

S. Assessing the effectiveness of split fertilization and cover crop cultivation in order to

https://doi.org/10.1007/s10668-005-1262-8
https://doi.org/10.1126/science.267.5201.1117
https://doi.org/10.1007/s100219900035
https://doi.org/10.1002/ldr.472
https://doi.org/10.1080/IW-6.3.852


CHAPTER 1. SYNOPSIS 29

conserve soil and water resources and improve crop productivity. Agric. Water Manage. 2016,

163, 305–318. doi:10.1016/j.agwat.2015.10.005.

Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water

Res. 2008, 42, 3285–3304. doi:10.1016/j.watres.2008.04.006.

Chang, H. Spatial and Temporal Variations of Water Quality in the Han River and Its Tributaries,

Seoul, Korea, 1993–2002. Water. Air. Soil Pollut. 2005, 161, 267–284. doi:10.1007/s11270-

005-4286-7.

Lee, S.; Nguyen, T.; Kim, H.; Koellner, T.; Shin, H.J. Do Consumers of Environmentally

Friendly Farming Products in Downstream Areas Have a WTP for Water Quality Protection

in Upstream Areas? Water 2017, 9, 511. doi:10.3390/w9070511.

Yoon, B.; Woo, H. Sediment problems in Korea. J. Hydraul. Eng. 2000, 126, 486–491.

doi:10.1061/(ASCE)0733-9429(2000)126:7(486).

Reza, A.; Eum, J.; Jung, S.; Choi, Y.; Owen, J.S.; Kim, B. Export of non-point source suspended

sediment, nitrogen, and phosphorus from sloping highland agricultural fields in the East Asian

monsoon region. Environ. Monit. Assess. 2016, 188. doi:10.1007/s10661-016-5681-9.

Arnhold, S.; Ruidisch, M.; Bartsch, S.; Shope, C.L.; Huwe, B. Simulation of runoff patterns

and soil erosion on mountainous farmland with and without plastic-covered ridge-furrow

cultivation in South Korea. Trans. ASABE 2013, 56, 667–679. doi:10.13031/2013.42671.

Ruidisch, M.; Kettering, J.; Arnhold, S.; Huwe, B. Modeling water flow in a plastic mulched

ridge cultivation system on hillslopes affected by South Korean summer monsoon. Agric.

Water Manage. 2013, 116, 204–217. doi:10.1016/j.agwat.2012.07.011.

Arnhold, S.; Lindner, S.; Lee, B.; Martin, E.; Kettering, J.; Nguyen, T.T.; Koellner, T.; Ok,

Y.S.; Huwe, B. Conventional and organic farming: Soil erosion and conservation potential for

row crop cultivation. Geoderma 2014, 219–220, 89–105. doi:10.1016/j.geoderma.2013.12.023.

Lee, J.Y. A Hydrological Analysis of Current Status of Turbid Water in Soyang River and Its

Mitigation. J. Soil Groundw. Environ. 2008, 13, 85–92.

Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson,

N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; Lienkaemper, G.W.; Cromack, K.; Cummins,

K.W. Ecology of Coarse Woody Debris in Temperate Ecosystems. In Advances in Ecological

Research; Elsevier, 1986; pp. 133–302. doi:10.1016/s0065-2504(08)60121-x.

https://doi.org/10.1016/j.agwat.2015.10.005
https://doi.org/10.1016/j.watres.2008.04.006
https://doi.org/10.1007/s11270-005-4286-7
https://doi.org/10.1007/s11270-005-4286-7
https://doi.org/10.3390/w9070511
https://doi.org/10.1061/(ASCE)0733-9429(2000)126:7(486)
https://doi.org/10.1007/s10661-016-5681-9
https://doi.org/10.13031/2013.42671
https://doi.org/10.1016/j.agwat.2012.07.011
https://doi.org/10.1016/j.geoderma.2013.12.023
https://doi.org/10.1016/s0065-2504(08)60121-x


CHAPTER 1. SYNOPSIS 30

Choi, Y. Woody Debris Runoff from Forested Watersheds and Limnological Effects in Reservoirs.

PhD thesis, Department of Environmental Science, Kangwon National University, Chuncheon,

South Korea, 2014.

Jeon, M.S.; Kang, J.W. Muddy Water Management and Agricultural Development Measures

in the Watershed of Soyang Dam: Focused on Haean-myeon, Yanggu-gun. Technical report,

Research Institute of Gangwon, 2010.

Ruidisch, M.; Arnhold, S.; Huwe, B.; Bogner, C. Is Ridge Cultivation Sustainable? A Case

Study from the Haean Catchment, South Korea. Appl. Environ. Soil Sci. 2013, 2013, 1–11.

doi:10.1155/2013/679467.

von Werner, M. GIS-orientierte Methoden der digitalen Reliefanalyse zur Modellierung von

Bodenerosion in kleinen Einzugsgebieten. PhD dissertation, Free University of Berlin, De-

partment of Earth Sciences., Berlin, Germany, 1995.

Ali, H.E.; Reineking, B. Extensive management of field margins enhances their poten-

tial for off-site soil erosion mitigation. J. Environ. Manage. 2016, 169, 202–209.

doi:10.1016/j.jenvman.2015.12.031.

Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling

and assessment part 1: model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89.

doi:10.1111/j.1752-1688.1998.tb05961.x.

Jang, S.S.; Ahn, S.R.; Kim, S.J. Evaluation of executable best management practices in Haean

highland agricultural catchment of South Korea using SWAT. Agric. Water Manage. 2017,

180, 224–234. Agricultural water and nonpoint source pollution management at a watershed

scale Part II Overseen by: Dr. Brent Clothier, doi:10.1016/j.agwat.2016.06.008.

Poppenborg, P.; Koellner, T. Do attitudes toward ecosystem services determine agricultural

land use practices? An analysis of farmers’ decision-making in a South Korean watershed.

Land Use Policy 2013, 31, 422–429. Themed Issue 1-Guest Editor Romy GreinerThemed

Issue 2- Guest Editor Davide Viaggi, doi:10.1016/j.landusepol.2012.08.007.

Chaplin-Kramer, R.; Sharp, R.P.; Mandle, L.; Sim, S.; Johnson, J.; Butnar, I.; Milà i Canals,

L.; Eichelberger, B.A.; Ramler, I.; Mueller, C.; McLachlan, N.; Yousefi, A.; King, H.; Kareiva,

P.M. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon

storage. Proc. Natl. Acad. Sci. U.S.A 2015, 112, 7402–7407. doi:10.1073/pnas.1406485112.

https://doi.org/10.1155/2013/679467
https://doi.org/10.1016/j.jenvman.2015.12.031
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1016/j.agwat.2016.06.008
https://doi.org/10.1016/j.landusepol.2012.08.007
https://doi.org/10.1073/pnas.1406485112


CHAPTER 1. SYNOPSIS 31

Chaplin-Kramer, R.; Hamel, P.; Sharp, R.; Kowal, V.; Wolny, S.; Sim, S.; Mueller, C. Landscape

configuration is the primary driver of impacts on water quality associated with agricultural

expansion. Environ. Res. Lett. 2016, 11, 074012. doi:10.1088/1748-9326/11/7/074012.

Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reinek-

ing, B.; Shope, C.L.; Tenhunen, J. Deriving a per-field land use and land cover map in an

agricultural mosaic catchment. Earth Syst. Sci. Data 2014, 6, 339–352. doi:10.5194/essd-6-

339-2014.

Kim, I.; Arnhold, S.; Ahn, S.; Le, Q.B.; Kim, S.J.; Park, S.J.; Koellner, T. Land use change and

ecosystem services in mountainous watersheds: Predicting the consequences of environmental

policies with cellular automata and hydrological modeling. Environ. Modell. Software 2017.

doi:10.1016/j.envsoft.2017.06.018.

Meusburger, K.; Mabit, L.; Park, J.H.; Sandor, T.; Alewell, C. Combined use of stable isotopes

and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea.

Biogeosciences 2013, 10, 5627–5638. doi:10.5194/bg-10-5627-2013.

Hou, J.; Fu, B.; Wang, S.; Zhu, H. Comprehensive analysis of relationship between vegetation

attributes and soil erosion on hillslopes in the Loess Plateau of China. Environ. Earth Sci.

2014, 72, 1721–1731. doi:10.1007/s12665-014-3076-1.

Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses–a guide to conservation

planning. In Agriculture Handbook; Number 537, U.S. Department of Agriculture, 1978; pp.

1–58.

Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss

equation. J. Soil Water Conserv. 1991, 46, 30–33.

Williams, J.R. Sediment-yield prediction with Universal Equation using runoff energy factor.

Present and prospective technology for predicting sediment yield and sources: proceedings of

the Sediment-Yield Workshop; Agricultural Research Service, U.S. Dept. of Agriculture: New

Orleans, Lousiana, 1975; Vol. ARS-S-40, pp. 244–252.

Morgan, R.P.C.; Morgan, D.D.V.; Finney, H.J. A predictive model for the assessment of soil

erosion risk. J. Agric. Eng. Res. 1984, 30, 245–253. doi:10.1016/S0021-8634(84)80025-6.

Morgan, R.P.C. A simple approach to soil loss prediction: a revised Morgan–Morgan–Finney

model. Catena 2001, 44, 305–322. doi:10.1016/S0341-8162(00)00171-5.

https://doi.org/10.1088/1748-9326/11/7/074012
https://doi.org/10.5194/essd-6-339-2014
https://doi.org/10.5194/essd-6-339-2014
https://doi.org/10.1016/j.envsoft.2017.06.018
https://doi.org/10.5194/bg-10-5627-2013
https://doi.org/10.1007/s12665-014-3076-1
https://doi.org/10.1016/S0021-8634(84)80025-6
https://doi.org/10.1016/S0341-8162(00)00171-5


CHAPTER 1. SYNOPSIS 32

Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport

models. Environ. Modell. Software 2003, 18, 761–799. The Modelling of Hydrologic Systems,

doi:10.1016/S1364-8152(03)00078-1.

Lilhare, R.; Garg, V.; Nikam, B. Application of GIS-Coupled Modified MMF Model to

Estimate Sediment Yield on a Watershed Scale. J. Hydrol. Eng. 2014, 20, C5014002.

doi:10.1061/(ASCE)HE.1943-5584.0001063.

Hu, L.J.; Flanagan, D.C. Towards new–generation soil erosion modeling: Building a unified

omnivorous model. J. Soil Water Conserv. 2013, 68, 100A–103A. doi:10.2489/jswc.68.4.100A.

Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A process-based soil erosion model for

USDA-Water Erosion Prediction Project technology. Trans. ASAE 1989, 32, 1587–1593.

De Roo, A.P.J.; Wesseling, C.G.; Ritsema, C.J. LISEM: A single-event physically based hy-

drological and soil erosion model for drainage basins. I: Theory, Input and Output. Hy-

drol. Processes 1996, 10, 1107–1117. doi:10.1002/(SICI)1099-1085(199608)10:8$<$1107::AID-

HYP415$>$3.0.CO;2-4.

Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci,

G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): a dynamic

approach for predicting sediment transport from fields and small catchments. Earth Surf. Pro-

cesses Landforms 1998, 23, 527–544. doi:10.1002/(SICI)1096-9837(199806)23:6$<$527::AID-

ESP868$>$3.0.CO;2-5.

Beven,K.J.; Kirkby,M.J. A physically based, variable contributing area model of basin hydrology.

Hydrol. Sci. Bull. 1979, 24, 43–69. doi:10.1080/02626667909491834.

Morgan, R.P.C.; Duzant, J.H. Modified MMF (Morgan–Morgan–Finney) model for evaluating

effects of crops and vegetation cover on soil erosion. Earth Surf. Processes Landforms 2008,

32, 90–106. doi:10.1002/esp.1530.

Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia

2015, 4, 1001–1007. doi:10.1016/j.aqpro.2015.02.126.

De Jong, S.M.; Paracchini, M.L.; Bertolo, F.; Folving, S.; Megier, J.; De Roo, A.P.J. Regional

assessment of soil erosion using the distributed model SEMMED and remotely sensed data.

Catena 1999, 37, 291–308. doi:10.1016/S0341-8162(99)00038-7.

https://doi.org/10.1016/S1364-8152(03)00078-1
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001063
https://doi.org/10.2489/jswc.68.4.100A
https://doi.org/10.1002/(SICI)1099-1085(199608)10:8$<$1107::AID-HYP415$>$3.0.CO;2-4
https://doi.org/10.1002/(SICI)1099-1085(199608)10:8$<$1107::AID-HYP415$>$3.0.CO;2-4
https://doi.org/10.1002/(SICI)1096-9837(199806)23:6$<$527::AID-ESP868$>$3.0.CO;2-5
https://doi.org/10.1002/(SICI)1096-9837(199806)23:6$<$527::AID-ESP868$>$3.0.CO;2-5
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1002/esp.1530
https://doi.org/10.1016/j.aqpro.2015.02.126
https://doi.org/10.1016/S0341-8162(99)00038-7


CHAPTER 1. SYNOPSIS 33

López-Vicente, M.; Navas, A.; Machín, J. Modelling soil detachment rates in rainfed

agrosystems in the south-central Pyrenees. Agric. Water Manage. 2008, 95, 1079–1089.

doi:10.1016/j.agwat.2008.04.004.

Vieira, D.C.S.; Prats, S.A.; Nunes, J.P.; Shakesby, R.A.; Coelho, C.O.A.; Keizer, J.J.

Modelling runoff and erosion, and their mitigation, in burned Portuguese forest using

the revised Morgan-Morgan-Finney model. For. Ecol. Manage. 2014, 314, 150–165.

doi:10.1016/j.foreco.2013.12.006.

Vigiak, O.; Okoba, B.O.; Sterk, G.; Groenenberg, S. Modelling catchment-scale erosion pat-

terns in the East African Highlands. Earth Surf. Processes Landforms 2005, 30, 183–196.

doi:10.1002/esp.1174.

Hwang, T.; Kang, S.; Kim, J.; Kim, Y.; Lee, D.; Band, L. Evaluating drought effect on MODIS

Gross Primary Production (GPP) with an eco-hydrological model in the mountainous forest,

East Asia. Global Change Biol. 2008, 14, 1037–1056. doi:10.1111/j.1365-2486.2008.01556.x.

Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Current State and

Trends; Island press: Washington DC, USA, 2005; chapter Mountain Systems, pp. 681–716.

Ward, G.M.; Aumen, N.G. Woody Debris as a Source of Fine Particulate Organic Matter

in Coniferous Forest Stream Ecosystems. Can. J. Fish. Aquat.Sci. 1986, 43, 1635–1642.

doi:10.1139/f86-202.

Rowland, R.; Inamdar, S.; Parr, T. Evolution of particulate organic matter (POM) along a

headwater drainage: role of sources, particle size class, and storm magnitude. Biogeochemistry

2017, 133, 181–200. doi:10.1007/s10533-017-0325-x.

Elliot, W.J. WEPP INTERNET INTERFACES FOR FOREST EROSION PREDICTION. J.

Am. Water Resour. Assoc. 2004, 40, 299–309. doi:10.1111/j.1752-1688.2004.tb01030.x.

Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R.; King, K.W. Soil and Water Assessment

Tool Theoretical Documentation Version 2009. Texas Water Resources Institute Technical

Report No. 406, Texas Water Resources Institute, 2011.

Kang, S.; Tenhunen, J. Complex Terrain and Ecological Heterogeneity (TERRECO):Evaluating

Ecosystem Services in Production Versus water Quantity/quality in Mountainous Landscapes.

Korean J. Agric. For. Meteorol. 2010, 12, 307–316.

https://doi.org/10.1016/j.agwat.2008.04.004
https://doi.org/10.1016/j.foreco.2013.12.006
https://doi.org/10.1002/esp.1174
https://doi.org/10.1111/j.1365-2486.2008.01556.x
https://doi.org/10.1139/f86-202
https://doi.org/10.1007/s10533-017-0325-x
https://doi.org/10.1111/j.1752-1688.2004.tb01030.x


CHAPTER 1. SYNOPSIS 34

Jeong, G. Digital Soil Mapping for Functional Analysis of Site Characteristics in Complex

Terrain. PhD thesis, University of Bayreuth, Bayreuth, 2016.

Kim, I. Development of integrated modeling framework of land use changes and ecosystem

services in mountainous watersheds. PhD thesis, University of Bayreuth, Bayreuth, 2017.

Maharjan,G.R.; Park, Y.S.; Kim,N.W.; Shin, D.S.; Choi, J.W.; Hyun,G.W.; Jeon, J.H.; Ok,Y.S.;

Lim, K.J. Evaluation of SWAT sub-daily runoff estimation at small agricultural watershed

in Korea. Front. Environ. Sci. Eng. 2013, 7, 109–119. doi:10.1007/s11783-012-0418-7.

Lee, J.Y. Importance of hydrogeological and hydrologic studies for Haean basin in Yanggu. J.

Geol. Soc. Korea 2009, 45, 405–414.

Shope, C.L.; Maharjan, G.R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner,

T.; Ok, Y.S.; Peiffer, S.; Kim, B.; Park, J.H.; Huwe, B. Using the SWAT model to improve

process descriptions and define hydrologic partitioning in South Korea. Hydrol. Earth Syst.

Sci. 2014, 18, 539–557. doi:10.5194/hess-18-539-2014.

Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds,

assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273.

doi:10.1016/j.jhydrol.2011.01.004.

Korea Meteorological Administration. Open meteorological data portal, 2019. accessed on 2019.

Lee, G.R. Characteristics of geomorphological surface and analysis of deposits in fluvial terraces

at upperreach of Soyang river. J. Korean Geogr. Soc. 2004, 39, 27–44.

Chough, S.K. Tectonic Setting. In Geology and Sedimentology of the Korean Peninsula; Elsevier,

2013; pp. 9–23. doi:10.1016/b978-0-12-405518-6.00002-4.

Jeong, G.; Choi, K.; Spohn, M.; Park, S.J.; Huwe, B.; Ließ, M. Environmental drivers of spatial

patterns of topsoil nitrogen and phosphorus under monsoon conditions in a complex terrain

of South Korea. PLOS ONE 2017, 12, 1–19. doi:10.1371/journal.pone.0183205.

Choi, K.; Arnhold, S.; Huwe, B.; Reineking, B. Daily Based Morgan–Morgan–Finney (DMMF)

Model: A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil

Surface Configurations. Water 2017, 9, 278. doi:10.3390/w9040278.

ORNL DAAC. MODIS Collection 5 Land Products Global Subsetting and Visualization Tool.

ORNL DAAC, Oak Ridge, Tennessee, USA. Accessed June 09, 2017. Subset obtained for

https://doi.org/10.1007/s11783-012-0418-7
https://doi.org/10.5194/hess-18-539-2014
https://doi.org/10.1016/j.jhydrol.2011.01.004
https://doi.org/10.1016/b978-0-12-405518-6.00002-4
https://doi.org/10.1371/journal.pone.0183205
https://doi.org/10.3390/w9040278


CHAPTER 1. SYNOPSIS 35

MOD16A2 product at 38.2838N,128.1252E, time period: 2009-01-01 to 2012-01-01, and subset

size: 31 x 31 km., 2008. doi:10.3334/ORNLDAAC/1241.

Rural Development Administration of South Korea. Agricultural technology portal (Nongsaro),

2018. (accessed on 31. Jul. 2018).

Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006.

NASA EOSDIS Land Processes DAAC., 2015. doi:10.5067/MODIS/MOD13Q1.006.

ORNL DAAC. MODIS Collection 6 Land Products Global Subsetting and Visualization Tool.

ORNL DAAC, Oak Ridge, Tennessee, USA. Accessed November 14, 2017. Subset obtained

for MOD13Q1 product at 38.2838N,128.1252E, time period: 2009-01-01 to 2012-01-01, and

subset size: 20.25 x 20.25 km., 2017. doi:10.3334/ORNLDAAC/1379.

Sobol’, I.M. Sensitivity Analysis for Nonlinear Mathematical Models. Math. Modeling Comput.

Experiment 1993, 1, 407–414.

Nossent, J.; Elsen, P.; Bauwens, W. Sobol’ sensitivity analysis of a complex environmental

model. Environ. Modell. Software 2011, 26, 1515–1525. doi:10.1016/j.envsoft.2011.08.010.

Qi, W.; Zhang, C.; Chu, J.; Zhou, H. Sobol’ ’s sensitivity analysis for TOPMODEL hydrological

model: A case study for the Biliu River Basin, China. J. Hydrol. Environ. Res. 2013, 1, 1–10.

Saltelli, A.; Annoni, P. How to avoid a perfunctory sensitivity analysis. Environ. Modell.

Software 2010, 25, 1508–1517. doi:10.1016/j.envsoft.2010.04.012.

Storn, R.; Price, K. Differential Evolution – A Simple and Efficient Heuristic for

global Optimization over Continuous Spaces. J. Global Optim. 1997, 11, 341–359.

doi:10.1023/A:1008202821328.

Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I — A discussion

of principles. J. Hydrol. 1970, 10, 282–290. doi:10.1016/0022-1694(70)90255-6.

Price, K.V.; Storn, R.M.; Lampinen, J.A. Differential Evolution - A Practical Approach to

Global Optimization.; Springer-Verlag: Berlin, Heidelberg, Germany, 2006. doi:10.1007/3-540-

31306-0.

Zheng, F.; Zecchin, A.C.; Simpson, A.R. Investigating the run-time searching behavior of the

differential evolution algorithm applied to water distribution system optimization. Environ.

Modell. Software 2015, 69, 292–307. doi:10.1016/j.envsoft.2014.09.022.

https://doi.org/10.3334/ORNLDAAC/1241
https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.3334/ORNLDAAC/1379
https://doi.org/10.1016/j.envsoft.2011.08.010
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1016/j.envsoft.2014.09.022


CHAPTER 1. SYNOPSIS 36

Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling

in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388.

doi:10.1016/j.cageo.2005.12.009.

Ørka, H.O.; Næsset, E.; Bollandsås, O.M. Classifying species of individual trees by intensity

and structure features derived from airborne laser scanner data. Remote Sens. Environ. 2009,

113, 1163–1174. doi:10.1016/j.rse.2009.02.002.

Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf.

Processes Landforms 1987, 12, 47–56. doi:10.1002/esp.3290120107.

Freeman, T.G. Calculating catchment area with divergent flow based on a regular grid. Comput.

Geosci. 1991, 17, 413–422. doi:10.1016/0098-3004(91)90048-i.

Böhner, J.; Köthe, R.; Conrad, O.; Gross, J.; Ringeler, A.; Selige, T., Soil Classification 2001;

The European Soil Bureau, Joint Research Centre, 2002; chapter Soil Regionalisation by

Means of Terrain Analysis and Process Parameterisation, pp. 213–222.

Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann,

V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model

Dev. 2015, 8, 1991–2007. doi:10.5194/gmd-8-1991-2015.

Park, S.J.; McSweeney, K.; Lowery, B. Identification of the spatial distribution of soils using

a process-based terrain characterization. Geoderma 2001, 103, 249–272. doi:10.1016/s0016-

7061(01)00042-8.

Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.;

Prentice Hall Press: Upper Saddle River, NJ, USA, 2015.

Thenkabail, P.; Lyon, J.; Huete, A. Advances in Hyperspectral Remote Sensing of Vegetation

and Agricultural Croplands. In Hyperspectral Remote Sensing of Vegetation; CRC Press, 2011;

pp. 3–36. doi:10.1201/b11222-3.

Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. doi:10.1023/A:1010933404324.

Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil organic carbon concentrations and

stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis.

Geoderma 2008, 146, 102–113. doi:10.1016/j.geoderma.2008.05.008.

https://doi.org/10.1016/j.cageo.2005.12.009
https://doi.org/10.1016/j.rse.2009.02.002
https://doi.org/10.1002/esp.3290120107
https://doi.org/10.1016/0098-3004(91)90048-i
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1016/s0016-7061(01)00042-8
https://doi.org/10.1016/s0016-7061(01)00042-8
https://doi.org/10.1201/b11222-3
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.geoderma.2008.05.008


CHAPTER 1. SYNOPSIS 37

Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital mapping of soil organic

matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil

2011, 340, 7–24. doi:10.1007/s11104-010-0425-z.

Kuhn, M.; Johnson, K. Applied predictive modeling; Springer New York: New York, 2013.

doi:10.1007/978-1-4614-6849-3.

Strobl, C.; Malley, J.; Tutz, G. An introduction to recursive partitioning: Rationale, application,

and characteristics of classification and regression trees, bagging, and random forests. Psychol.

Methods 2009, 14, 323–348. doi:10.1037/a0016973.

Kampichler, C.; Wieland, R.; Calmé, S.; Weissenberger, H.; Arriaga-Weiss, S. Classification

in conservation biology: A comparison of five machine-learning methods. Ecol. Inf. 2010,

5, 441–450. doi:10.1016/j.ecoinf.2010.06.003.

Miller, B.A.; Koszinski, S.; Wehrhan, M.; Sommer, M. Impact of multi-scale pre-

dictor selection for modeling soil properties. Geoderma 2015, 239-240, 97–106.

doi:10.1016/j.geoderma.2014.09.018.

Brungard, C.W.; Boettinger, J.L.; Duniway, M.C.; Wills, S.A.; Edwards, T.C. Machine learning

for predicting soil classes in three semi-arid landscapes. Geoderma 2015, 239-240, 68–83.

doi:10.1016/j.geoderma.2014.09.019.

Poggio, L.; Gimona, A.; Brewer, M.J. Regional scale mapping of soil properties and their

uncertainty with a large number of satellite-derived covariates. Geoderma 2013, 209-210, 1–

14. doi:10.1016/j.geoderma.2013.05.029.

Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using recursive feature elimination in random

forest to account for correlated variables in high dimensional data. BMC Genet. 2018, 19.

doi:10.1186/s12863-018-0633-8.

Bedison, J.E.; Johnson, A.H. Controls on the Spatial Patterns of Carbon and Nitrogen in

Adirondack Forest Soils along a Gradient of Nitrogen Deposition. Soil Sci. Soc. Am. J. 2009,

73, 2105. doi:10.2136/sssaj2008.0336.

Wang, K.; Zhang, C.; Li, W. Predictive mapping of soil total nitrogen at a regional scale: A

comparison between geographically weighted regression and cokriging. Appl. Geogr. 2013,

42, 73–85. doi:10.1016/j.apgeog.2013.04.002.

https://doi.org/10.1007/s11104-010-0425-z
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1037/a0016973
https://doi.org/10.1016/j.ecoinf.2010.06.003
https://doi.org/10.1016/j.geoderma.2014.09.018
https://doi.org/10.1016/j.geoderma.2014.09.019
https://doi.org/10.1016/j.geoderma.2013.05.029
https://doi.org/10.1186/s12863-018-0633-8
https://doi.org/10.2136/sssaj2008.0336
https://doi.org/10.1016/j.apgeog.2013.04.002


CHAPTER 1. SYNOPSIS 38

Peng, G.; Bing, W.; Guangpo, G.; Guangcan, Z. Spatial Distribution of Soil Organic Carbon

and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of

Northern China. PLOS ONE 2013, 8, e83592. doi:10.1371/journal.pone.0083592.

Kunkel, M.L.; Flores, A.N.; Smith, T.J.; McNamara, J.P.; Benner, S.G. A simplified approach

for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma 2011,

165, 1–11. doi:10.1016/j.geoderma.2011.06.011.

Johnson, C.E.; Ruiz-Méndez, J.J.; Lawrence, G.B. Forest Soil Chemistry and Ter-

rain Attributes in a Catskills Watershed. Soil Sci. Soc. Am. J. 2000, 64, 1804.

doi:10.2136/sssaj2000.6451804x.

Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal

forests. Geoderma 2007, 141, 139–148. doi:10.1016/j.geoderma.2007.05.013.

Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in

forest floor and mineral soil under six common European tree species. For. Ecol. Manage.

2008, 255, 35–48. doi:10.1016/j.foreco.2007.08.015.

Zhang, Z.; Yu, X.; Qian, S.; Li, J. Spatial variability of soil nitrogen and phosphorus of a mixed for-

est ecosystem in Beijing, China. Environ. Earth Sci. 2010, 60, 1783–1792. doi:10.1007/s12665-

009-0314-z.

Sumfleth, K.; Duttmann, R. Prediction of soil property distribution in paddy soil landscapes

using terrain data and satellite information as indicators. Ecol. Indic. 2008, 8, 485–501.

doi:10.1016/j.ecolind.2007.05.005.

Smeck, N.E. Phosphorus dynamics in soils and landscapes. Geoderma 1985, 36, 185–199.

doi:10.1016/0016-7061(85)90001-1.

Jeong, J.J.; Bartsch, S.; Fleckenstein, J.H.; Matzner, E.; Tenhunen, J.D.; Lee, S.D.; Park, S.K.;

Park, J.H. Differential storm responses of dissolved and particulate organic carbon in a

mountainous headwater stream, investigated by high-frequency, in situ optical measurements.

J. Geophys. Res. Biogeosci. 2012, 117, n/a–n/a. doi:10.1029/2012jg001999.

Jung, B.J.; Lee, H.J.; Jeong, J.J.; Owen, J.; Kim, B.; Meusburger, K.; Alewell, C.; Gebauer, G.;

Shope, C.; Park, J.H. Storm pulses and varying sources of hydrologic carbon export from a

mountainous watershed. J. Hydrol. 2012, 440-441, 90–101. doi:10.1016/j.jhydrol.2012.03.030.

https://doi.org/10.1371/journal.pone.0083592
https://doi.org/10.1016/j.geoderma.2011.06.011
https://doi.org/10.2136/sssaj2000.6451804x
https://doi.org/10.1016/j.geoderma.2007.05.013
https://doi.org/10.1016/j.foreco.2007.08.015
https://doi.org/10.1007/s12665-009-0314-z
https://doi.org/10.1007/s12665-009-0314-z
https://doi.org/10.1016/j.ecolind.2007.05.005
https://doi.org/10.1016/0016-7061(85)90001-1
https://doi.org/10.1029/2012jg001999
https://doi.org/10.1016/j.jhydrol.2012.03.030


CHAPTER 1. SYNOPSIS 39

Uriarte, M.; Turner, B.L.; Thompson, J.; Zimmerman, J.K. Linking spatial patterns of leaf

litterfall and soil nutrients in a tropical forest: a neighborhood approach. Ecol. Appl. 2015,

25, 2022–2034. doi:10.1890/15-0112.1.

Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer New

York, 2009. doi:10.1007/978-0-387-84858-7.

Park, S.J.; Vlek, P.L.G. Environmental correlation of three-dimensional soil spatial variability:

a comparison of three adaptive techniques. Geoderma 2002, 109, 117–140. doi:10.1016/s0016-

7061(02)00146-5.

Remesan, R.; Mathew, J. Hydrological Data Driven Modelling: A Case Study Approach; Springer

International Publishing, 2015. doi:10.1007/978-3-319-09235-5.

James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with

Applications in R; Springer New York, 2013. doi:10.1007/978-1-4614-7138-7.

Cichosz, P. Data Mining Algorithms: Explained Using R; John Wiley & Sons, Ltd: Chichester,

West Sussex ; Malden, MA, 2015. doi:10.1002/9781118950951.

Feigelson, E.D.; Babu, G.J. Modern Statistical Methods for Astronomy: With R Applications;

Cambridge University Press, 2012. doi:10.1017/cbo9781139015653.

Malley, J.D.; Malley, K.G.; Pajevic, S. Statistical Learning for Biomedical Data; Cambridge

University Press, 2011. doi:10.1017/cbo9780511975820.

Ambroise, C.; McLachlan, G.J. Selection bias in gene extraction on the basis of mi-

croarray gene-expression data. Proc. Natl. Acad. Sci. U.S.A 2002, 99, 6562–6566.

doi:10.1073/pnas.102102699.

Sorrell, B.K.; Boon, P.I. Convective gas flow in Eleocharis sphacelata R. Br.: methane transport

and release from wetlands. Aquat. Bot. 1994, 47, 197–212. doi:10.1016/0304-3770(94)90053-1.

Wood, P.J.; Armitage, P.D. Biological Effects of Fine Sediment in the Lotic Environment.

Environ. Manage. 1997, 21, 203–217. doi:10.1007/s002679900019.

Baker, D.W.; Bledsoe, B.P.; Albano, C.M.; Poff, N.L. Downstream effects of diversion dams

on sediment and hydraulic conditions of Rocky Mountain streams. River Res. Appl. 2011,

27, 388–401. doi:10.1002/rra.1376.

https://doi.org/10.1890/15-0112.1
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1016/s0016-7061(02)00146-5
https://doi.org/10.1016/s0016-7061(02)00146-5
https://doi.org/10.1007/978-3-319-09235-5
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1002/9781118950951
https://doi.org/10.1017/cbo9781139015653
https://doi.org/10.1017/cbo9780511975820
https://doi.org/10.1073/pnas.102102699
https://doi.org/10.1016/0304-3770(94)90053-1
https://doi.org/10.1007/s002679900019
https://doi.org/10.1002/rra.1376


CHAPTER 1. SYNOPSIS 40

Extence, C.A.; Chadd, R.P.; England, J.; Dunbar, M.J.; Wood, P.J.; Taylor, E.D. The assessment

of fine sediment accumulation in rivers using macro-invertebrate community response. River

Res. Appl. 2011, 29, 17–55. doi:10.1002/rra.1569.

Flores, L.; Díez, J.R.; Larrañaga, A.; Pascoal, C.; Elosegi, A. Effects of retention site on

breakdown of organic matter in a mountain stream. Freshwater Biol. 2013, 58, 1267–1278.

doi:10.1111/fwb.12125.

Haga, H.; Kumagai, T.; Otsuki, K.; Ogawa, S. Transport and retention of coarse woody

debris in mountain streams: An in situ field experiment of log transport and a field

survey of coarse woody debris distribution. Water Resour. Res. 2002, 38, 1–1–1–16.

doi:10.1029/2001wr001123.

https://doi.org/10.1002/rra.1569
https://doi.org/10.1111/fwb.12125
https://doi.org/10.1029/2001wr001123


Chapter 2

Commentary on ‘Modified MMF (Morgan–Morgan–Finney)

model for evaluating effects of crops and vegetation cover

on soil erosion’ by Morgan and Duzant (2008)

Kwanghun Choi 1*, Bernd Huwe 2, and Björn Reineking 1,3,4

1 Department of Biogeographical Modelling, Bayreuth Center of Ecology and Environmental Re-

search (BayCEER), University of Bayreuth, Universitätstraße 30, 95440, Bayreuth, Germany
2 Department of Soil Physics, Bayreuth Center of Ecology and Environmental Research (BayCEER),

University of Bayreuth, Universitätstraße 30, 95440, Bayreuth, Germany
3 Univ. Grenoble Alpes, Irstea, EMGR, F-38000 Grenoble, France
4 Department of Particle Physics, Astrophysics, Geosciences, Ecology, and Environment, Université

Grenoble Alpes, 38402, Grenoble, France

Correspondence: kwanghun.choi@yahoo.com; bt302546@uni-bayreuth.de

Abstract

The Morgan–Morgan–Finney (MMF) model is a widely used semi-physically based soil erosion model

that has been tested and validated in various land use types and climatic regions. The latest version

of the model, the modified MMF (MMMF) model, improved its conceptual physical representations

through several modifications of the original model. However, the MMMF model has three problematic

parts to be corrected: 1) the effective rainfall equation, 2) the interflow equation, and 3) the improperly

normalized C-factor of the transport capacity equation. In this commentary, we identify and correct

the problematic parts of the MMMF model, which should result in more accurate estimations of runoff
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and soil erosion rates.

Keywords: effective rainfall, interflow, C-factor, MMF, soil erosion model, error correc-

tion

2.1 Introduction

The Morgan–Morgan–Finney (MMF) model (Morgan et al., 1984) is a semi-physically based

model used to estimate the amount of annual runoff and soil eroded from a field or a catchment.

Similar to physically based models such as SWAT (Neitsch et al., 2011), EUROSEM (Morgan

et al., 1998), LISEM (De Roo et al., 1996), and WEPP (Nearing et al., 1989), the MMF model

has the properties of both physically based and empirical models and provides an in-depth

understanding of soil erosion processes by using physical concepts. Moreover, the MMF model,

similarly to empirical models such as USLE (Wischmeier and Smith, 1978) and RUSLE (Renard

et al., 1991), maintains a conceptual simplicity by using semi-empirical relationships and does

not require the excessive parameters and computing resources (Morgan et al., 1984, Morgan,

2001, Morgan and Duzant, 2008, Lilhare et al., 2014). For this reason, the MMF and the revised

MMF (RMMF) (Morgan, 2001) models have been applied and validated in a variety of climatic

regions and land use types (Morgan et al., 1984, Morgan, 2001, De Jong et al., 1999, Vigiak

et al., 2005, López-Vicente et al., 2008, Pandey et al., 2009, Li et al., 2010, Feng et al., 2014,

Tesfahunegn et al., 2014, Vieira et al., 2014).

In the latest version of the MMF, the modified MMF (MMMF) (Morgan and Duzant, 2008),

hydrological processes were improved by considering the slope angle in the calculation of effective

rainfall and introducing interflow processes. In addition, the soil erosion processes of the MMMF

model were improved by introducing gravitational deposition process, generalizing the effect of

ground surface on sediment deposition and transportation, and considering the characteristics

of each soil particle type (Morgan and Duzant, 2008, Lilhare et al., 2014). These modifications

allow the MMMF model to consider physical aspects of terrain and soil surface conditions more

effectively than previous versions of the MMF model.

However, we argue that errors persist in effective rainfall, interflow, and transport capacity

equations, which ultimately affects the model outputs in certain conditions. Despite these errors,

however, the MMMF model was implemented and used in several studies without apparent

consideration of the problematical parts (i.e., Setiawan (2012) and Lilhare et al. (2014)). In

addition, one of the problematical parts of the MMMF model, the problematic slope adjustment
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factor of effective runoff, was used in the Modified-RMMF-2014 model of López-Vicente et al.

(2015).

The objective of the present study is to identify and correct the problematic terms concerning:

1. a trigonometric error in the calculation of effective rainfall (Rf),

2. a quantity estimation error in the calculation of interflow (IF ), and

3. an improperly normalized C-factor in the transport capacity equation (TC).

2.2 Problematic parts of the MMMF model

2.2.1 Trigonometric error in the calculation of effective rainfall

The MMMF model represents the catchment through several interconnected elements, each

of which has a uniform slope, land cover, and soil type. In the MMF model, effective rainfall is the

primary source of the hydrological processes, which regulate surface runoff and the soil erosion

processes. The MMMF model calculates effective rainfall (RfMMMF; mm) while considering the

slope of a given element by using the following equation (Morgan and Duzant (2008), eq. (1)):

RfMMMF = R · (1−PI) · 1
cos(S) , (2.1)

where R (mm) is the mean annual rainfall, PI is the area proportion of the permanent inter-

ception of rainfall, and S (°) is the slope of an element.

However, we argue that in order to calculate effective rainfall correctly, cos(S) should be used

as a sloping adjustment factor rather than 1
cos(S) as described in Sharon (1980) and Tani (1997).

We demonstrate our claims through mathematical proof and in Figure 2.1. Let us consider an

element on a hill slope with an angle of S (°). Assuming that the area in the horizontal plane is

A (m2) and its projected area on the element is A′ (m2), the trigonometric relationship between

A and A′ is

A= A′ · cos(S). (2.2)

Because the total volume of rainfall (P ; L) is the same for both A and A′ (Figure 2.1), the

amount of rainfall per unit area for A and A′ can be calculated as

R =
P

A
(2.3)

R′ =
P

A′
. (2.4)
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S

A = A′ · cos(S)

A′S

P

R =
P
A

R′ =
P
A′

Fig. 2.1. Conceptual representation of a hillslope with a slope angle of S (°). A (m2) is the area
of a horizontal plane, and A′ (m2) is the projected area of A on a hillslope.Because the volume
of rainfall (P ; L) is the same for both A and A′, the rainfall per unit area for both areas are P

A

(= R; mm) and P
A′ (= R′; mm). From the trigonometric rule, R′ is equal to R · cos (S).

From the equations (2.2), (2.3), and (2.4), we can estimate the rainfall per unit surface area

on a hillslope (R′; mm) with the rainfall of the area (R; mm).

R′ =
P

A′
=
P

A
· cos(S) = R · cos(S) (2.5)

If the element has areas with permanent interception of rainfall (PI), the effective rainfall per

unit surface area (Rfcorrected) should be calculated as

Rfcorrected = R′ · (1−PI) = R · (1−PI) · cos(S). (2.6)

Thus, the slope adjustment factor should be cos(S) rather than 1
cos(S) in order to calculate

effective rainfall (Rf) considering the slope.

2.2.1.1 Consequence of the error in calculating effective rainfall

Owing to the problematic slope adjustment factor of the effective rainfall suggested by

Morgan and Duzant (2008), the model overestimates the effective rainfall when the slope of an

element increases, as shown in Figure 2.2. Considering that the MMF model and its variants

have been applied in mountainous areas with steep hillslopes, as listed in Table 2.1, the MMMF

model has a high risk of overestimation of effective rainfall. In the case of Setiawan (2012),

the MMMF model overestimated effective rainfall by at least 136% of the corrected value at
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Fig. 2.2. (a) Relative values of effective rainfall based on the slope invariant effective rainfall
of the Morgan–Morgan–Finney (MMF) and revised MMF (RMMF) models (RfMMF/RMMF) as
a function of slope angle. (b) Extent of overestimation of effective rainfall from the MMMF
model (RfMMMF) to the corrected value (Rfcorrected) as a function of slope angle. The dashed
gray lines in (b) indicate the extent of overestimation and the corresponding slope angles.

Table 2.1. Previous studies in which the Morgan–Morgan–Finney (MMF) model and its variants,
the revised MMF (RMMF) and the modified MMF (MMMF), were applied to steep hillslopes

Source Year Model Site Slope condition
Feng et al. (2014) 2014 RMMF Guzhou catchment, China >55° (15.8% of total area)

35° - 55° (45.3% of total area)
25° - 35° (20.7% of total area)
15° - 25° (9.2% of total area)
0° - 15° (9.0% of total area)

Lilhare et al. (2014) 2014 MMMF Gamber watershed, India Steep topographic gradient
Tesfahunegn et al. (2014) 2014 RMMF Mai-Negus catchment, Ethiopia Maximum slope of 73°
Setiawan (2012) 2012 MMMF Kejajar Sub-district, Indonesia >31.0° (42.9% of total area)

16.7° - 31.0° (28.3% of total area)
8.5° - 16.7° (16.1% of total area)
0.0° - 8.5° (11.7% of total area)

Li et al. (2010) 2010 RMMF Zuli River Basin, China Maximum slope of 45°
Pandey et al. (2009) 2009 RMMF Dikrong river basin, India >45° (21.0% of total area)

36° - 45° (1.8% of total area)
16° - 35° (12.8% of total area)
<15° (64.4% of total area)

Vigiak et al. (2005) 2005 RMMF Kwalei catchment, Tanzania >11.3° (50% of total area)
Gikuuri catchment, Kenya 1.1° - 28.8° (mean: 10.2°)

areas with a slope greater than 31.0°, which account for most of the research site. If the MMMF

model had been applied to the site of Tesfahunegn et al. (2014), it would have overestimated

effective rainfall 3.4 times more than that in the previous versions which do not consider the

slope and 11.7 times more than the corrected value for the area with the maximum slope angle.

According to the sensitivity analysis of Morgan and Duzant (2008), the model outputs of surface
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runoff and soil loss are highly sensitive to effective rainfall. Moreover, the overestimation can

be greater on downslope elements where the overestimated runoff from upslope accumulates.

Therefore, the trigonometric error in the calculation of effective rainfall may lead to incorrect

results to a significant degree if the model is applied to a large watershed with steep slopes.

2.2.2 Quantity estimation error in calculating interflow

2.2.2.1 Incorrect formula in the interflow equation

For calculating annual runoff amount, the MMMF model considers interflow (IF ; mm), which

is the daily mean amount of subsurface water that flows from an element to downslope elements.

The interflow from upslope elements (IF (CE); mm) affects runoff generation processes at an

element by reducing the soil moisture storage capacity of the soil (Rc; mm). The MMMF model

uses the following equation to calculate subsurface interflow (IFMMMF; mm) from an element

(Morgan and Duzant (2008), eq. (13)):

IFMMMF =
(
R−E−Q

365

)
· (LP · sin(S)) , (2.7)

where R (mm) is the mean annual rainfall per unit area, E (mm) is the annual evaporation

per unit area, Q (mm) is the annual runoff per unit area, LP (m/d) is the saturated lateral

permeability as a unit of velocity, S (°) is the slope angle of an element, and 365 is the number

of days in one year. The first part of equation (2.7) corresponds to the daily mean soil water

of one year (SW ; mm). The second part of the equation is the velocity (m/d) of the interflow

of an element, which can be interpreted as the travel distance of interflow during one day (m)

for daily time steps.

In the MMMF model, the unit of IFMMMF is defined as volume per unit area (L/m2 =

mm), which is similar to other hydrological quantities in the model (i.e., R, Rf , Rc, E, and Q).

However, the unit of interflow in equation (2.7), which is depth multiplied by velocity (or length

for daily time steps), contradicts the definition of IFMMMF as depth (mm) in the model.

We argue that the interflow equation is improperly formulated and that the IFMMMF has the

wrong unit. Let us consider the interflow generated from an element i, as shown in Figure 2.3.

The daily mean soil water over one year (SW ) is

SW =
R−E−Q

365 . (2.8)
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Rc.max.i

wi

li SW

LP · sin(S)

Ai

Si

Element i

Rc.max.j

wj

lj

Aj

IF(CE)jSj

Downslope direction

Element j

Fig. 2.3. Conceptual representation of interflow between two adjacent elements i and j. Here,
A, w, l, Rc.max, and S represent the surface area, width, length, maximum soil moisture storage
capacity, and slope angle of each element, respectively. Because daily mean soil water is SW
and the travel distance of soil water during one day is LP · sin(Si), the daily mean volume
of soil water flowing from an element (VSW ) is SW ·LP · sin(Si) ·wi. Because the interflow
produced from the element i (IFi) is equal to VSW per unit surface area of the element, IFi

should be SW ·LP ·sin(Si)·wi
Ai

, and the inflows of subsurface soil water from the contributing area to
the element j (IF (CE)j) should be SW ·LP ·sin(Si)·wi

Aj
. The IFi and the IF (CE)j have different

values when the surface areas of the elements i and j are different.

Because the travel distance of interflow during one day is equal to LP · sin(S), the volume of

interflow during one day is

VIF = SW ·LP · sin(Si) ·wi. (2.9)

VIF is the depth of soil water (SW ) multiplied by the travel distance of the interflow (LP ·sin(S))

and the width of the element (wi), as represented in Figure 2.3. Equivalent to other hydrological

quantities, the quantity of interflow (IFi) is the total volume per surface area of an element.
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Therefore, IFi can be calculated as

IFi =
VIF

Ai
=
SW ·LP · sin(Si) ·wi

Ai
=
SW ·LP · sin(Si)

li
. (2.10)

According to equations (3.7) and (2.10), interflow (IFcorrected) should be calculated as

IFcorrected =
(
R−E−Q

365

)
· (LP · sin(Si)) ·

1
li
=
IFMMMF

li
. (2.11)

Therefore, the additional term of 1
li
is required for the interflow equation of Morgan and Duzant

(2008). Furthermore, with this term, IFcorrected has the correct unit of depth (mm). The de-

pendence of interflow on slope length is obvious, as shown in the lateral flow equation of the

widely used SWAT model (equation 2:3.5.9 of Neitsch et al. (2011)), because the SWAT model

also uses water volume per unit area. We derived the same formula of IFcorrected by using the

theoretically well-established Darcy’s law in the supplementary material of this article.

2.2.2.2 Discrepancy between generated and transferred interflow

Another problem exists in the interflow equation even if IFcorrected is used rather than

IFMMMF. As shown in Figure 2.3, the generated interflow from the element i flows into the

element j. Because the total volume of interflow (VIF ) is the same for both elements, the

interflow into the element j (IF (CE)j) should be

IF (CE)j =
VIF

Aj
6= VIF

Ai
= IFi. (2.12)

The discrepancy between generated and transferred interflow is attributed to the different surface

areas of the elements. If using raster maps in the MMMF models (Figure 2.3), as is performed

in most MMF model studies, the extent of the discrepancy can be calculated as

IFi

IF (CE)j
=
VIF

Ai
· Aj

VIF
=
lj
li
=

cos(Si)

cos(Sj)
. (2.13)

Therefore, the discrepancy is larger if the difference in slope between adjacent upslope and

downslope elements is significant. Similar discrepancies between adjacent elements can also be

found in every matter exchange processes of the MMMF model (i.e., surface runoff, interflow,

and sediment). Problems of the discrepancy can be solved by using the water volume or the

total sediment mass for transferring water and sediments and dividing the volume or total mass

by the surface area of the receiving element.
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2.2.2.3 Consequence of the error in calculating interflow

Owing to the incorrect formula in the interflow equation of Morgan and Duzant (2008), the

MMMF model overestimates interflow when the slope length of an element increases. However,

the model underestimates interflow if the slope length of an element is less than 1 m. Figure 2.4

shows the extent of the overestimation when the MMMF model is applied to raster maps such

as a digital elevation model (DEM). For a DEM with a certain resolution (res; m), the width

(w) and the length (l) of each element are equal to res and res
cos(S) . Therefore, the extent of

overestimation of the interflow is dependent on the slope of an element and the resolution of the

DEM. In the case of Setiawan (2012), who applied the MMMF model using a DEM with 0.05 m
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Fig. 2.4. Extent of the overestimation of IFMMMF compared with IFcorrected as a fraction of
IFMMMF

IFcorrected
by slope and resolution. (a) General pattern for maximum resolution of 100 m. (b)

Pattern for fine-resolution section. Values larger (smaller) than one indicate overestimation
(underestimation).

resolution for a maximum slope of 41◦, the MMMF model estimated at most only 7% of the

corrected interflow. In the case of Lilhare et al. (2014), who applied the MMMF model using

a DEM with 90 m resolution, the extent of overestimation was more than 90 times compared

with the corrected interflow.

Owing to the discrepancy between the generated and transferred interflow, the model over-

estimates the interflow from contributing elements to a receiving element when the receiving

element is steeper than the contributing elements, as shown in Figure 2.5. In addition, the

model underestimates the interflow from contributing elements when they are steeper than the

receiving element. The extent of the discrepancy increases with the increase in slope differences

between contributing and receiving elements. Because errors in the calculation of interflow are

positively correlated with the size, slope, and rate of change in the slope of elements, the model is

not suitable for steep mountainous terrain with complex topography. Furthermore, the interflow
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Fig. 2.5. Extent of the discrepancy between the generated interflow from a contributing element
and the transferred interflow to a receiving element.

affects the quantity of surface runoff by affecting the amount of the soil moisture storage (Rc),

as shown in eq. (10) of Morgan and Duzant (2008).

2.2.3 Improperly normalized C-factor in the transport capacity equa-

tion

The MMF model uses a crop cover management factor (C-factor), which is the ratio of soil

loss under a given surface condition (actual condition) to that from a bare ground condition

(reference condition) based on the empirical values of Universal Soil Loss Equation (USLE)

cropping (C) and erosion control (P) factors (Morgan et al., 1984). In the MMMF model, Morgan

and Duzant (2008) the C-factor is calculated by modifying the ratio of soil loss to the ratio of

runoff velocity under an actual condition as that of the reference condition. This modification

allows the MMMF model to generalize the empirically based C-factor by using measurable

physical quantities. As a result, the model can consider the effects of surface roughness, rill

depth, and vegetation structure on soil erosion in addition to the effect of crop cover management

on soil erosion. However, we argue that the C-factor used in the MMMF model is not properly

normalized in the course of combining multiple velocities (i.e., va, vv, and vt) corresponding

to different surface condition types. As a consequence, if the model considers more than one

surface condition type, the unitless C-factor contains the inconsistent units of the velocity or

the squared value of velocity. The MMMF model calculates the C-factor as (eqs. (39)–(41) of

Morgan and Duzant (2008))

CMMMF =
va ·vv ·vt

vb
, (2.14)

where va, vv, and vt are runoff velocity considering the rill condition, vegetation cover, and

surface roughness, respectively. vb is the runoff velocity for the reference condition of unchanneled
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overland flow over smooth bare ground. Moreover, adding and subtracting variables are allowed

in the MMMF model, according to the surface condition. Assuming that only one of the surface

condition types is considered in the model, the C-factor for each surface condition type should

be calculated as

Ca =
va

vb
(2.15)

Cv =
vv

vb
(2.16)

Ct =
vt

vb
. (2.17)

As described in the MMMF model, all surface condition types are considered independently

from each other, which means that a surface condition type is not affected by other surface

condition types. Therefore, for the combination of the surface condition types, the C-factor

should be calculated as

Ccorrected =
va

vb
· vv

vb
· vt

vb
=
va ·vv ·vt

vb
3 . (2.18)

According to equation (2.18), Ccorrected is unitless because each velocity is normalized by the

reference velocity. Even if some surface condition types are missing or added, the unit of the

factor remains constant.

2.2.3.1 Consequence of improper normalization of the C-factor

According to Petryk and Bosmajian (1975), rill depth (hydraulic radius) acts as an accelerator

of the runoff velocity, whereas vegetation and surface roughness act as resistors of the runoff

velocity. Therefore, the C-factor should be increased when the model additionally considers

a surface with a rill depth deeper than that of reference surface condition (0.005 m). On the

contrary, the C-factor should be decreased when the model additionally considers vegetation

cover and surface roughness of an element. However, for hillslopes in which va, vv, and vt are

faster than 1 m/s, the C-factor of the MMMF model sharply increases by a factor of the added

runoff velocity even if the model additionally considers vegetation cover or surface roughness.

For slopes with runoff velocities lower than 1 m/s, the C-factor is underestimated when the

model additionally considers surface condition type. Errors occur because the C-factor of the

MMMF model does not consider the relative velocity of the reference surface condition. The

effect of the error is significant for elements with high runoff velocities when the soil erosion

rates are high. Owing to the slope dependence of runoff velocity, increased slope of an element

relates to greater overestimation.
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2.3 Conclusions

The MMF model is a widely used semi-physically based soil erosion model because it includes

rigorous physical processes, easily understood features, and moderate data requirements. The

newly added features of Morgan and Duzant (2008) consider the slope angle, subsurface water

processes, surface conditions, and characteristics of each soil particle type (Lilhare et al., 2014),

which have the potential to further strengthen the physical basis of the model. We identified

three problematic formulations related to the calculations of effective rainfall, interflow, and the

C-factor of transport capacity, which can produce inadequate results of runoff and soil erosion. In

addition, we suggested alternative formulations to provide more accurate estimations of runoff

and soil erosion.
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Appendix 2.A Derivation of the corrected interflow equa-

tion using Darcy’s law

Let us assume that there is an amount of soil water equivalent to the daily mean soil water

over one year (SW ; mm) in an element and that only soil water exerts a force on the element

for the interflow process (Figure 2.A1). The volumetric flux of soil water (JSW ; m3/s) in the

w

l

SW

A

σa

S

Fig. 2.A1. Conceptual representation of soil water in an element. A, w, l, and S are the area
(m2), width (m), slope length (m), and slope angle (°) of the element, respectively; SW (mm)
is the daily mean soil water over one year, and σa (m2) is the cross-sectional area of SW .

element can be derived from Darcy’s law when the hydraulic conductivity (K) of the soil is

given:

JSW = −K ·σa

ρ ·g
· ∆P
l

, (2.A1)

where σa (m2) is the cross-sectional area of the soil water along the downslope direction, ρ

(kg/m3) is the density of the soil water, g (m/s2) is the gravitational acceleration, ∆P (Pa) is

a pressure gradient of the soil water for both sides of the element, and l (m) is the length of the

soil water along the downslope direction. Because pressure (P ) is force (f ; N) divided by the

cross-sectional area, P can be calculated as

P =
f

σa
. (2.A2)

The gradient of force (∆f ; N) acting on both ends of the element can be derived from the

volume of the soil water (V ′SW ; m3), which is calculated as

V ′SW = 0.001 ·SW ·A= 0.001 ·SW ·w · l, (2.A3)
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where A (m2),w (m), and l (m) are the surface area, width, and length of the element, respectively.

The unit conversion factor of 0.001 is used to convert millimeters to meters. Because the gradient

of force depends on the gradient of the mass of both ends of the element, ∆f is calculated as

∆f = V ′SW ·ρ ·g · sin (S), (2.A4)

where S is the slope angle (°) of the element. From equations (2.A1), (2.A2), (2.A3), and

(2.A4), the volumetric flux of the soil water can be simplified as

JSW = −0.001 ·K ·SW ·w · sin (S). (2.A5)

Because the hydraulic conductivity during one day is defined as saturated lateral permeability

(LP ; m/day) in the MMMF model, the volume of soil water flowing from the element (VSW .out)

during one day is

VSW .out = JSW ·1 (day) = (0.001 ·LP ·SW ·w · sin (S)) ·1 (day). (2.A6)

Because the time step of one day affects only the unit of equation (2.A6), the interflow from

the element (IFcorrected; mm) as a quantity of volume per unit surface area can be calculated

as

IFcorrected = 1000 · VSW .out

A
=
LP ·SW ·w · sin (S)

l
, (2.A7)

where 1000 is the unit converting factor from meters to millimeters. Therefore, we can use

Darcy’s law to obtain an identical equation as that in the main text that depends on slope

length.
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Abstract

In this paper, we present the Daily based Morgan–Morgan–Finney model. The main processes in this

model are based on the Morgan–Morgan–Finney soil erosion model, and it is suitable for estimating

surface runoff and sediment redistribution patterns in seasonal climate regions with complex surface

configurations. We achieved temporal flexibility by utilizing daily time steps, which is suitable for

regions with concentrated seasonal rainfall. We introduce the proportion of impervious surface cover

as a parameter to reflect its impacts on soil erosion through blocking water infiltration and protecting
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the soil from detachment. Also, several equations and sequences of sub-processes are modified from the

previous model to better represent physical processes. From the sensitivity analysis using the Sobol’

method, the DMMF model shows the rational response to the input parameters which is consistent

with the result from the previous versions. To evaluate the model performance, we applied the model to

two potato fields in South Korea that had complex surface configurations using plastic covered ridges at

various temporal periods during the monsoon season. Our new model shows acceptable performance for

runoff and the sediment loss estimation (NSE≥ 0.63, |PBIAS| ≤ 17.00, and RSR ≤ 0.57). Our findings

demonstrate that the DMMF model is able to predict the surface runoff and sediment redistribution

patterns for cropland with complex surface configurations.

Keywords: runoff estimation; sediment redistribution; impervious area; monsoon rainfall;

plastic mulching

3.1 Introduction

Land degradation and freshwater deterioration by soil erosion are major environmental

and economic problems faced worldwide (Pimentel and Kounang, 1998, Sidle et al., 2006).

The problem is prominent in Monsoon and Mediterranean regions where intensive agricultural

practices and massive land use changes are taking place on erosion-prone hilly landscapes

affected by concentrated seasonal rainfall (Morgan, 2005, Onori et al., 2006, Napoli et al., 2016,

Zema et al., 2016, Huon et al., 2017). In regions suffering from soil erosion, people often use

simulation models to project soil erosion rates under varied environmental conditions and land

use change scenarios in order to determine optimal, cost-effective soil erosion mitigation measures

for vulnerable areas (Boardman, 2006, Hu and Flanagan, 2013).

Soil erosion models are classified into three categories of empirical, process-based, and con-

ceptual models according to their characteristics; of these, empirical models such as USLE (Wis-

chmeier and Smith, 1978), RUSLE (Renard et al., 1991), and MUSLE (Williams, 1975) have

been frequently used to estimate soil erosion rate as they are easy to use and require reasonable

amounts of data and computing resources (Morgan et al., 1984, Morgan, 2001, Lal, 2001, Merritt

et al., 2003, Lilhare et al., 2014). However, such empirical models also have fundamental limita-

tions. The models are mostly based on empirical relationships induced by their place of origin

(e.g., farmland in the American Great Plains for USLE, RUSLE, and MUSLE), and are therefore

often unsuitable for regions with different land and environmental types. Additionally, the em-

pirical models calculate soil erosion rates primarily through a few simple statistical relationships,
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and are therefore unable to provide enough information on the underlying physical processes to

develop a comprehensive understanding of soil erosion. (Hu and Flanagan, 2013, Merritt et al.,

2003, Lilhare et al., 2014, Avwunudiogba and Hudson, 2014). In contrast, process-based models

such as EUROSEM (Morgan et al., 1998), LISEM (De Roo et al., 1996), EROSION 3D (von

Werner, 1995), WEPP (Nearing et al., 1989), and ANSWERS (Beasley et al., 1980) estimate

soil erosion rates with well-defined and sophisticated physical equations of mass and momen-

tum conservation laws (Hu and Flanagan, 2013, Merritt et al., 2003). However, process-based

models demand a huge amount of data and computing resources for initialization, calibration,

and simulation. As a result, it is often difficult to apply these types of model to large temporal

and spatial scales (Hu and Flanagan, 2013, Merritt et al., 2003, Lilhare et al., 2014). Intermedi-

ately, conceptual models such as the Morgan–Morgan–Finney (MMF) (Morgan et al., 1984),

TOPMODEL (Beven and Kirkby, 1979), and the Hydrologiska Byråns Vattenbalansavdelning

(HBV) (Bergström and Forsman, 1973) models use semi-empirical equations with a physical

basis to estimate annual runoff and soil erosion rates, and are designed to possess advantages of

both empirical and process-based models (Devia et al., 2015). These features allow the model

to simulate soil erosion processes on the basis of physical concepts while maintaining a simple

structure and a moderate level of data demand (Morgan et al., 1984, Morgan, 2001, Lilhare

et al., 2014, Morgan and Duzant, 2008).

Among the conceptual models, the MMF and the revised MMF (RMMF) (Morgan, 2001)

models have been successfully tested for functionality with a variety of climate regions and

land use types (Morgan et al., 1984, Morgan, 2001, De Jong et al., 1999, Vigiak et al., 2005,

López-Vicente et al., 2008, Vieira et al., 2014). The modified MMF model (MMMF) (Morgan

and Duzant, 2008) exemplified the runoff processes by focusing on hillslope topography and

by introducing the subsurface interflow process to the MMF model. The modified version also

refined the sedimentation processes by adding the effects of vegetation structure to the soil

deposition processes as well as by explicitly simulating soil redistribution processes for each soil

particle size class of clay, silt, and sand (Lilhare et al., 2014, Morgan and Duzant, 2008).

Although several elements in its conceptual and physical bases are enhanced, the model still

has three significant limitations in terms of general applicability. First, the temporal scale of

the MMF model is fixed as an annual basis. However, this temporal scale is not suitable for

regions with concentrated seasonal rainfall such as Monsoon and Mediterranean climates where

a majority of soil erosion occurs by highly intensive rainfall events (Hu and Flanagan, 2013,

Baartman et al., 2012). Furthermore, as computing power increases, there is a growing demand

for soil erosion models that can be applied flexibly over short- and long-term scales given that the
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frequency and intensity of heavy rainfall is likely to increase (Merritt et al., 2003, Stocker et al.,

2013). Second, the model does not consider impervious surface covers, despite their having

enormous impacts on runoff and soil redistribution patterns by reducing water infiltration,

and consequently, increasing the volume of surface runoff and protecting surface soil from

detachment. The area of impervious covers are expanding sharply as a result of urbanization

(e.g., pavements) and advances in agricultural technology (e.g., plastic film mulching) (Espí

et al., 2006, Shuster et al., 2005, Pappas et al., 2008, Arnhold et al., 2013, Ruidisch et al., 2013).

Third, the three components of the effective rainfall, the interflow, and the flow velocity of the

MMMF model need to be revised for a better physical representation of the model (Choi et al.,

2016). The MMMF model computes the effective rainfall with the slope adjusting factor of

1/cos(S), where S is the slope angle, which is physically incorrect and must be changed to

cos(S). Because of the incorrect slope adjusting factor, the MMMF model overestimates the

surface runoff and soil erosion under steep slope conditions (Choi et al., 2016). The Interflow

equation of the MMMF model does not consider the width of a slope; a factor that should have

been considered for physical consistency of the model. From this equation, the MMMF model

estimates low interflow in areas wider than 1 m and higher interflow in the areas narrower than

1 m (Choi et al., 2016). Flow velocity is one of the key factors for estimating particle settling

rates and transport capacity and is determined by four different equations that vary according

to the surface conditions. However, the MMMF model uses only one flow velocity for particle

settling but uses many for the transport capacity without proper normalization. Consequently,

the MMMF model calculates transport capacity incorrectly for an element with mixed surface

conditions (Choi et al., 2016).

In this study, we suggest a new soil erosion model based on the MMMF model called the Daily

based Morgan–Morgan–Finney (DMMF) model. This model addresses the above mentioned

limitations through the following improvements:

1. A modified temporal scale of the model from an annual basis to daily basis. This is better

suited to regions with intensive seasonal rainfall

2. Inclusion of impervious surface covers (e.g., plastic mulching and artificial structures such

as concrete ditches and pavements)

3. Revision of the effective rainfall equation, the interflow equation, and equations relevant

to flow velocity.
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3.2 Model Description

3.2.1 The DMMF Model

The DMMF model is a conceptual soil erosion model used to estimate surface runoff and

sediment flux from a field scale on a daily basis. Spatially, the DMMF model represents an

area as several interconnected elements of uniform topography, soil characteristics, land cover

type, and vegetation structure. Through coupling the model with flow direction algorithms, each

element receives water and sediments from upslope elements and delivers the generated surface

runoff and eroded soils to downslope elements. Temporally, the model estimates the surface

runoff and the sediment flux of each element on a daily basis and can extend its temporal

scales through updating the model for a given period. The DMMF model estimates water

and sediment flux of an element in two main phases; the hydrological phase and the sediment

phase. The hydrological phase is based on the simple soil water storage approach where surface

runoff occurs when daily surface water inputs exceed soil water storage capacity (i.e., saturation-

excess overland flow) as outlined in Kirkby (1976). In the model, we redefined the soil water

storage capacity as the surface water infiltration capacity after considering the blocking effect

of impervious covers. The sediment phase is largely based on the sediment balance process from

the MMMF model. Based on this framework, we redefined the flow velocity by adopting the

modified Manning’s equation from Petryk and Bosmajian (1975) and the transport capacity

equation with the normalized flow velocity. Additionally, we changed to have all sediment input

processes occur before the deposition process in order to apply deposition process for all the

sediment inputs. The model is also adapted to consider the impact of impervious surface covers

on runoff and sediment redistribution. The hydrological and the sediment phases of the model

work with water volume (L/m2 = mm) and sediment weight (kg/m2) per surface area of an

element, respectively. On the other hand, matter exchange between elements uses the total

volume of water (L) and the total weight of sediment (kg), and considers the size difference of

source areas and accepting areas. In this study, we describe the DMMF model comprehensively;

although a substantial part of the model follows the MMMF model, to explain the new routines

and revised processes with consistency. To distinguish the new routines and revised equations

from those of the original MMMF model, we indicate unchanged MMMF equations by an

asterisk next to the equation number. A detailed description of input parameters is presented

in Table 4.1.



CHAPTER 3. DAILY BASED MORGAN–MORGAN–FINNEY (DMMF) MODEL 63

3.2.2 Hydrological Phase

The hydrological phase consists of two major processes: the surface runoff and the subsurface

interflow processes (Figure 3.1). In the model, the subsurface process is simplified by concep-

tualizing a soil profile as one layer and adopting average hydraulic characteristics of an entire

soil profile (i.e., soil water contents (θinit, θsat, and θfc), and saturated soil lateral hydraulic

conductivity (K)).

Inflow [L]
[L]

[mm]

Hydrological processes [mm]

Runoff Interflow

[mm]

[L]
Outflow [L]

Surface
Subsurface

Qin.1

Qin.2

Qin.3

Σ(Qin) Σ(Qin)
A

Qout

IFin.1

IFin.2

IFin.3

Σ(IFin) Σ(IFin)
A

IFout

SWinit

SWc

Re f f ET

Q

SW

SW f c

Fig. 3.1. Schematic hydrological processes within an element. The hydrological phase estimates
the amount of surface runoff (Q; mm) and subsurface interflow (IFout; L) generated from an
element. Assuming that the surface area of an element is A (m2), surface water inputs of
an element is the effective rainfall (Reff ; mm) and surface water contribution from upslope
elements (Σ(Qin)/A; mm). Surface runoff occurs when surface water inputs exceed surface water
infiltration capacity, (SWc; mm) which depends on available soil pore space left for surface water
infiltration and the proportion of the impervious surface area (IMP ). The subsurface interflow
occurs when the soil water budget (SW ; mm) exceeds the soil water at field capacity (SWfc;
mm). In this condition, a part of the excess soil water outflows from an element as an interflow,
and the surface runoff and subsurface interflow generated in an element are discharged to
downslope elements.

3.2.2.1 Surface Runoff Process

The fountainhead of the hydrological process is the effective rainfall (Reff ; mm): the volume

of rainfall reaching the unit surface area of an element. According to the corrected effective

rainfall from Choi et al. (2016), with the existence of natural or artificial objects that intercept

rainfall before reaching the ground, the effective rainfall on a unit surface area (A; m2) of an
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element can be described as,

Reff = R · (1−PI) · cos(S) , (3.1)

where PI is the proportion of the permanent interception area and S is the slope of an element.

In the MMMF model, the slope adjustment factor is 1/cos(S), but it should be cos(S) from

the trigonometric rule as described in Choi et al. (2016) and in Figure 3.2.

The DMMF model estimates the amount of the surface runoff (Q; mm) by considering

surface water infiltration capacity, surface water input, and the proportion of the impervious

surface area of an element. The surface water infiltration capacity (SWc; mm) is the amount

of surface water that can infiltrate into the subsurface layer. SWc is determined by potential

pore space left for water infiltration and the proportion of the impervious surface area (IMP ).

Because impervious surface hinders infiltration of water, IMP is assumed to decrease SWc.

Therefore, SWc is defined as,

SWc = (1− IMP ) · (SWsat−SWinit−
Σ(IFin)

A
) , (3.2)

where SWsat (mm) and SWinit (mm) are the amount of the saturated soil water and the initial

soil water that already exist in the soil before a daily event started. ΣIFin (L) is the total

volume of subsurface inflow of water from upslope elements and A (m2) is the surface area of

an element. Thus ΣIFin/A (mm) represents the inflow of subsurface water per unit surface

area. The first parenthesis of Equation (3.2) indicates the blocking effect of water infiltration by

impervious covers, and the second parenthesis indicates the potential pore space left for water

infiltration. The saturated and initial soil water volumes are,

SWsat = 1000 · θsat ·SD , (3.3)

SWinit = 1000 · θinit ·SD . (3.4)

Here, θsat, and θinit are the saturated and initial volumetric soil water contents (vol/vol)

and SD (m) is the soil depth of an element. The factor of 1000 was used to convert meters to

millimeters. The negative SWc indicates the return flow, which contributes to additional surface

water input through upwelling when soil water inputs exceed the saturation point of soil. In

the model, surface runoff occurs when surface water inputs exceed the surface water infiltration

capacity of an element. The surface water inputs are the sum of the effective rainfall, and surface
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water contributions from upslope elements (Σ(Qin)/A; mm). Therefore, the surface runoff of a

unit surface area of an element is,

Q= Reff +
Σ(Qin)

A
−SWc . (3.5)

and the total volume of surface runoff from an element (Qout; L) is,

Qout = Q ·A . (3.6)

S

A′ = A · cos(S)

A
S

P R =
P
A′

Re f f =
P
A

= R · cos(S)

Fig. 3.2. Conceptual representation of the effective rainfall (Reff ) on a slope element without
permanent interception of rainfall (modified from Figure 1 of Choi et al. (2016)). Given rainfall
with a total volume of P , the amount of rainfall per unit area for both A (m2) and A′ (m2)
is P/A and P/A′ which is equal to R. From the trigonometric rule, A, the projected area of
A′ on the slope, is described as A′/cos(S). Therefore, the rainfall per unit surface area of the
element (i.e., the effective rainfall) should be R · cos(S).

3.2.2.2 Interflow Process

After the surface runoff process, the model estimates the subsurface interflow of an element

(IFout), which is the volume of soil water being transferred to downslope elements. Interflow

occurs when the amount of soil water budget (SW ; mm) exceeds soil water at field capacity

(SWfc; mm). The soil water budget is calculated considering subsurface water inputs including

existing soil water, surface water infiltration, and evapotranspiration, which is equal to the total

water budget of an element:

SW = (SWinit +
Σ(IFin)

A
)+ (Reff +

Σ(Qin)

A
−Q)−ET . (3.7)

The formula in the first parenthesis of Equation (3.7) represents subsurface water inputs
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and the second formula parenthesis represents infiltrated surface water to the subsurface. Soil

water at field capacity is defined as the amount of water-holding capacity of soil against the

gravitational force based on Veihmeyer and Hendrickson (1931), but the value in this model

covers the entire soil profile, and not a particular layer of uniform texture. In this model, soil

water at field capacity is described as,

SWfc = 1000 ·θfc ·SD , (3.8)

where θfc (vol/vol) is the water content at field capacity of the entire soil profile. According

to the corrected interflow equation suggested by Choi et al. (2016), IFout of an element with a

width of w is described as (see details in Figure 3.3),

IFout =


K · sin(S) · (SW −SWfc) ·w , when IFout < (SW −SWfc) ·A ,

(SW −SWfc) ·A , when IFout ≥ (SW −SWfc) ·A ,
(3.9)

for a given saturated soil lateral hydraulic conductivity (K; m/d). The volume of interflow

cannot exceed the total volume of soil water budget over field capacity, which is the source of

interflow. After the interflow process, a part of soil water remains in the soil. The remaining

soil water content (θr; vol/vol) can then be described as,

θr =
(SW − IFout/A)

1000·SD , (3.10)

where 1000 is used to convert meters to millimeters. The DMMF model uses the measured

initial soil water content just before the first day of a rainfall event and the remaining soil water

content (θr) replaces the initial soil water content (θinit) of the next day when the model is

applied to a period longer than a day.

3.2.3 Sediment Phase

The sediment phase of the model inherits the basic structure of the sediment balance process

of the MMMF model. Therefore the model estimates sediment budgets of each particle size class

(i.e., clay, silt, and sand) separately, considering surface conditions (e.g., vegetation structures,

surface roughness, and crop field management type). The model also follows step-wise processes

of the sediment detachment and deposition of the MMMF model which simplify the in-element

erosion process. There are three differences in the sediment phase in this model from that of

the MMMF model (Figure 3.4). First, the sequence of processes was changed to have all the

sediment input processes occur before deposition processes. Second, we revised the flow velocity
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SWsat

w

l

K · sin(S)

(SW − SW f c)

SSlope direction

IFout = K · sin(S) · (SW − SW f c) · w

Fig. 3.3. Conceptual representation of interflow in an element (modified from Figure 3 of Choi
et al. (2016)). Let’s assume that there is an element with the width of w, the length of l and
slope of S. Then, given transferable soil water for interflow (SW −SWfc) and saturated soil
lateral hydraulic conductivity (K), the volume of interflow from the element (IFout) can be
represented as K · sin(S) · (SW −SWfc) ·w, and cannot exceed the volume of the transferable
soil water of the element ((SW −SWfc) ·A).

equation from four equations of the MMMF model to two equations of reference and actual

flow velocities by adopting the modified Manning’s equation from Petryk and Bosmajian (1975).

This modification further simplified and enhanced the conceptual clarity of the model, not only

in the flow velocity equation, but also in the particle settling rates and the transport capacity

calculations. Third, we changed the MMMF sediment budgeting process to that of Meyer and

Wischmeier (1969) as the MMMF process is motivated by longer time steps. The sediment phase

comprises of three processes: sediment delivery to the surface runoff, gravitational deposition,

and soil erosion processes. A schematic description of the sediment phase is given in Figure 3.4.

3.2.3.1 Sediment Delivery to Surface Runoff

In the model, surface runoff and sediments that are delivered to surface runoff are the

two main factors that determine sediment loss from an element. The sources of delivered

sediments are in-element detached particles by the impact of rainfall and surface runoff, as

well as delivered soil particles from upslope elements. Soil detachment by rainfall occurs when

raindrops fall directly onto ground surface with sufficient kinetic energy to detach soil particles

from the surface. Because canopy cover changes the kinetic energy of raindrops by initializing

raindrop velocity and altering raindrop size (Brandt, 1990), rainfall has a different impact on

areas under and without canopy cover. Grounds without canopy cover are affected by the
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Fig. 3.4. Schematic sediment phase of an element. The model estimates the amount of sediment
loss from an element through three steps. In the first step, detached soil particles from an element
(by raindrop (F ) and runoff (H)) and sediment inputs from upslope elements (Σ(SLin)/A) are
delivered to the surface water of an element. Second, some of the suspended sediments (SS)
delivered in the runoff settle down due to gravity at the deposition rate of the suspended
sediments in the runoff (DEP ). Third, the model estimates the amount of sediment loss from
an element by comparing the transport capacity of the runoff (TC) and sediments available
for transport (G), which are the remaining suspended sediments after gravitational deposition
process. If TC is larger than G, all the remaining sediments in the water (i.e., G) are washed
away from an element. Otherwise, the amount of sediments equal to TC is carried out by the
surface runoff to downslope elements.

raindrops falling directly onto the bare soil (direct throughfall).

The kinetic energy density of direct throughfall (UDT ; J/(m2 mm)) is estimated from the

universal power law equation suggested by Shin et al. (2016) for a given rainfall intensity (RI;

mm/h):

UDT = 10.3 ·RI2/9 . (3.11)

In contrast, under the canopy cover, soil surface is affected by the water-drops falling from the

leaves and stems of vegetation after rainfall (leaf drainage). The kinetic energy density of leaf

drainage (ULD; J/(m2 mm)) under a 100% canopy cover is a function of plant height (PH;

m) (Brandt, 1990):

ULD =


15.8 ·

√
PH−5.87 , when ULD ≥ 0,

0 , when ULD < 0.
(3.12*)

Because ULD is kinetic energy density, its value cannot be less than zero; although the empirical
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equation potentially allows negative values. In an element partly covered with vegetation,

the kinetic energy of the effective rainfall (KE; J/m2) can be expressed as the product of the

effective rainfall (Reff ) and the area weighted average of kinetic energy densities of UDT and

ULD:

KE = Reff · {(1−CC) ·UDT +CC ·ULD} , (3.13)

where CC is the proportion of the canopy covered area of an element. Then, the amount of soil

particles detached by raindrops (F ; kg/m2) is calculated as a function of detachability of soil

particles by raindrop impact (DK; g/J), proportion of each particle size class (P ), proportion

of bare soil surface (1−EPA), and the kinetic energy of the effective rainfall (KE):

Fc =DKc ·Pc · (1−EPA) ·KE ·10−3 , (3.14)

Fz =DKz ·Pz · (1−EPA) ·KE ·10−3 , (3.15)

Fs =DKs ·Ps · (1−EPA) ·KE ·10−3 . (3.16)

Here, subscripts c, z and s represent each particle size classes of clay, silt, and sand, respec-

tively. EPA is the erosion protected area by ground cover (GC) and impervious area (IMP ):

EPA= IMP +(1− IMP ) ·GC . (3.17)

The guide values for detachability of clay, silt, and sand are 0.1, 0.5, and 0.3, respectively (Mor-

gan and Duzant, 2008) but these values should be used carefully according to the soil characteris-

tics of study sites as shown in

Poesen (1985) and it is recommended that users employ field-measured values.

The second sediment source is detached soil particles by the surface runoff (H; kg/m2).

The amount of detached soil particles by runoff is calculated as a function of detachability of soil

particles by runoff (DR; g/mm), the amount of runoff (Q), the slope angle (S) of the element,

and the proportion of the bare surface area. Therefore, H for particle size classes are,

Hc =DRc ·Pc ·Q1.5 · (1−EPA) · (sin(S))0.3 ·10−3 , (3.18)

Hz =DRz ·Pz ·Q1.5 · (1−EPA) · (sin(S))0.3 ·10−3 , (3.19)

Hs =DRs ·Ps ·Q1.5 · (1−EPA) · (sin(S))0.3 ·10−3 . (3.20)

The guide values for detachability of clay, silt, and sand are 1.0, 1.6, and 1.5, respectively (Morgan

and Duzant, 2008). The values should be used carefully and can be replaced with observed site
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specific data.

The third sediment source is sediment inputs from upslope elements (Σ(SLin)) averaged by

the surface area of an element. Therefore, the overall delivered sediments to the surface runoff

(SS; kg/m2) are represented as below,

SSc = Fc +Hc +
Σ(SLin.c)

A
, (3.21)

SSz = Fz +Hz +
Σ(SLin.z)

A
, (3.22)

SSs = Fs +Hs +
Σ(SLin.s)

A
. (3.23)

Detached sediments can be transported by surface runoff through suspension, saltation, and creep-

ing processes. In the model, all sediments delivered to surface runoff are assumed as being in

suspension.

3.2.3.2 Gravitational Deposition of Suspended Sediments

After sediments are delivered to the surface runoff, a part of the suspended sediments (SS)

in the runoff settle to the bottom by gravitational force. Tollner et al. (1976) estimated the

settling rate of suspended sediments using the probabilistic concept of the particle fall number

(Nf ), which is the ratio of falling time of soil particles to traveling time along the flow direction

of an element. To calculate the particle fall number, the runoff flow velocity (v; m/s) and

settling velocity of each particle size class (vs; m/s) are required. Flow velocity depends on the

flow depth (d), the slope of an element (S) and the modified Manning’s roughness coefficient

(n′) from Petryk and Bosmajian (1975). The modified Manning’s roughness coefficient is the

hydraulic roughness considering the effect of the drag force by vegetation on the hydraulic

roughness in addition to the Manning’s roughness coefficient. The value is determined by the

Manning’s roughness coefficient (n), the flow depth (d), the diameter of plant stems (D) and

the number of stems per unit area (NV ) with the standard gravity of the Earth (g ≈ 9.8 m/s2):

v =
1
n′
·d2/3 ·

√
tan(S) , (3.24)

n′ =

(
n2 +

D ·NV ·d4/3

2 ·g

)1/2

. (3.25)

Recommended values for d are 0.005 for unchanneled flow, 0.01 for shallow rills, and 0.25

for deeper rills, but field measured flow depth can be used. For cultivated land with tillage,

the Manning’s roughness coefficient can be derived empirically from the soil surface roughness
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(RFR; cm/m) as below (Morgan and Duzant, 2008),

ln(n) = −2.1132+ 0.0349 ·RFR . (3.26*)

Guide values of surface roughness (RFR) for different tillage implements are described in

Morgan (2005) and Morgan and Duzant (2008).

The settling velocity (vs) is estimated from the Stokes’ equation for a creeping flow when

the Reynolds number is low:

vs =
δ2 · (ρs−ρ) ·g

18 ·η . (3.27*)

Here, δ and ρs are the diameter and density of a particle, and ρ and η are the density and

the viscosity of a fluid. The density of each particle size class (ρs) is set as 2,650 kg/m3, which

is the average density of quartz. The density of overland flow (ρ) is set as the density of water

(1,000 kg/m3), and the viscosity of overland flow (η) is set as 0.001,5 kg/(ms) following Morgan

and Duzant (2008). Assuming that particle diameters are 0.2×10−5 m for clay, 0.6×10−4 m

for silt, and 0.2×10−3 m for sand, then the settling velocities are 0.2×10−5 m/s for clay (vs.c),

0.2×10−2 m/s for silt (vs.z), and 0.2×10−1 m/s for sand (vs.s) (Morgan and Duzant, 2008).

The particle fall number (Nf ) of each particle size class is a function of the actual runoff velocity

(v), the settling velocities of each particle size class (vs), the depth of runoff (d) in meters,

and the length of the element (l):

Nf .c =
l

v
· vs.c
d

, (3.28*)

Nf .z =
l

v
· vs.z
d

, (3.29*)

Nf .s =
l

v
· vs.s
d

. (3.30*)

Using the particle fall number of each particle size class, the rate of deposition of the sediments

suspended in runoff (DEP ) is estimated from the equation of Tollner et al. (1976), as below,

DEPc = min (0.441 ·Nf .c , 1) , (3.31*)

DEPz = min (0.441 ·Nf .z , 1) , (3.32*)

DEPs = min (0.441 ·Nf .s , 1) . (3.33*)

Because the deposited particles cannot exceed the sediments suspended in the runoff, the max-

imum value for the deposition rate of each particle is set to one. After a part of the suspended
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sediments is deposited by gravitational force, the remaining suspended sediments become avail-

able for transport (i.e., the available sediments for transport (G) (kg/m2)) by the surface

runoff:

Gc = SSc · (1−DEPc) , (3.34)

Gz = SSz · (1−DEPz) , (3.35)

Gs = SSs · (1−DEPs) . (3.36)

3.2.3.3 Estimation of Sediment Loss from an Element

The transport capacity of the runoff (TC; kg/m2) of an element depends on the volume of

surface runoff per unit surface area of an element (Q), the slope steepness (S) and the effect of

surface conditions (Morgan and Duzant, 2008). The effect of surface conditions is expressed as

the ratio between actual runoff velocity (v) and the reference velocity of the element (vr; m/s).

The reference velocity (vr) is the runoff velocity of an element under a standard surface condition

(i.e., unchanneled overland flow over smooth bare soil) and is described by the Manning’s equation,

vr =
1
nr
·d2/3

r ·
√

tan(S) , (3.37)

where values of nr = 0.015 and dr = 0.005 are used for a standard surface condition. Following

the corrected MMMF C-factor suggested by Choi et al. (2016), the total transport capacity of

the runoff is calculated as,

TC =
(
v

vr

)
·Q2 · sin(S) ·10−3 . (3.38)

The transport capacity of the runoff is partitioned into clay, silt, and sand by multiplying

the mass proportion of each particle size class with TC:

TCc = Pc ·TC , (3.39)

TCz = Pz ·TC , (3.40)

TCs = Ps ·TC . (3.41)

The sediment loss from the element (SL) is determined by comparing the transport capacity of

the runoff (TC) with the amount of available sediment for transport (G) (Morgan and Duzant,

2008, Meyer and Wischmeier, 1969). Because this model calculates the output on a daily basis,

it is better to follow the sedimentation process from Meyer and Wischmeier (1969), which is
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appropriate for shorter time periods. When TC is greater than G, the surface runoff washes

away all the sediments available for transport from an element, and in the other case, an amount

of sediment (SL) equivalent to TC is lost from an element:

SLc = min (TCc , Gc) , (3.42)

SLz = min (TCz , Gz) , (3.43)

SLs = min (TCs , Gs) . (3.44)

The overall amount of sediment eroded from an element (SL) is the sum of clay, silt, and sand

discharged from an element:

SL= SLc +SLz +SLs . (3.45*)

3.2.4 Estimation of Total Runoff and Soil Erosion for Rainfall Period

The model can estimate the total amount of surface runoff and sediment loss from an element

during a rainfall period by utilizing daily input data. For long-term estimation during a rainfall

period, the model requires daily values of time-variant meteorological data (R, RI, and ET ),

and vegetation structure data (GC, CC, PH, D, and NV ). On the contrary, the model requires

site specific data of an element for static parameters such as topography (S, l, and w), soil

characteristics (SD, θsat, θfc, DK, DR, and K), and surface conditions (PI, IMP , and n). It

is difficult to obtain daily data for the initial soil water content (θinit), although it is highly

time-variant, similar to meteorological data. To cope with the problem, the model iteratively

replaces the initial soil water content (θinit) with the remaining soil water content (θr after

the interflow process. Through daily updates, the model estimates the surface runoff and the

sediment loss from an element during a period by accumulating daily results of Q and SL for

the period.

3.3 Testing the DMMF Model

3.3.1 Sensitivity Analysis of the Model

A sensitivity analysis of the DMMF model was conducted to investigate the relative impor-

tance of input parameters on the amount of surface runoff and sediment loss from an element.

We analyzed the sensitivity of the model to each parameter with the Sobol’ method. The Sobol’

method is a variance-based sensitivity analysis through variance decomposition and has the
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advantage to estimate the total effect of a parameter including its effects in combination with

other parameters (Sobol’, 1993, Saltelli, 2002, Saltelli et al., 2010, Qi et al., 2013). Therefore,

unlike the local and the one factor at a time (OAT) sensitivity analysis, the Sobol’ method

can be applied to non-linear and non-additive models with many parameters (Saltelli and An-

noni, 2010, Nossent et al., 2011). Because of its advantages, the Sobol’ method has become

popular in environmental and hydrological modeling that employ models such as SWAT and

TOPMODEL (Qi et al., 2013, Nossent et al., 2011). The total effect of a parameter by the Sobol’

total index (SI) is the amount of total variance caused by a parameter normalized by the amount

of variance induced from all parameters (unconditional variance of the model). Parameters with

large SI have relatively high impacts and those with small SI have low impacts on the model

output. To estimate SIs for the input parameters of the DMMF model, we set the range of the

parameters based on the values recommended by Morgan and Duzant (2008). For meteorological

parameters, we took extreme values to consider various weather events from a variety of regions.

We set the range of the element size (res) considering various DEM resolutions, and set the

complete range of the slope (S), from a flat surface to a vertical cliff. The detailed range of

parameters is listed in Table 4.1. Sobol’ total indices for input parameters are estimated through

the “sobolmartinez” function of the “sensitivity” package (Pujol et al., 2016) using R version

3.2.3 (R Core Team, 2015). We used the default bootstrapping option of the function employing

a sample size of 105.

According to Sobol’ total indices (Figure 3.5), runoff of an element is highly sensitive to

the factors determining surface water infiltration capacity (i.e., θinit, θsat, SD, and IMP ) and

water input from the effective rainfall (i.e., R, S, and PI). The amount of sediment loss from an

element is also highly sensitive to the factors that show high sensitivity to surface runoff, because

the amount of surface runoff is the main driver of soil redistribution. Furthermore, sediment

loss of an element shows sensitivities to surface conditions (IMP , and GC) and vegetation

structures (D, NV , and CC). For a single element sensitivity analysis, the soil water content

at field capacity (θfc) and the lateral hydraulic conductivity (K) show no effects on the model

because they are involved in subsurface water exchange among elements that are not considered

in the sensitivity analysis for one element. These sensitivity analysis results are agree well with

the model assumptions as well as conform to parameter sensitivity analysis of the MMMF model

described by Morgan and Duzant (2008).
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Table 3.1. Input parameters and their range for sensitivity analysis.

Parameter Description Unit Range

R Daily rainfall [mm] 1–1825 (a)

RI Mean rainfall intensity of a day [mm/h] 15.0–305.0 (a)

ET Daily evapotranspiration [mm] 0.0–15.0 (b)

S Slope angle [rad] 0.0–1.5 (c)

res Grid size of a raster map for the width (w) and the length (l)
of an element that are equal to res and res/cos(S)

[m] 0.25–100 (d)

Pc Proportion of clay of the surface soil [proportion] 0–1
Pz Proportion of silt of the surface soil [proportion] 0–1
Ps Proportion of sand of the surface soil [proportion] 0–1
SD Soil depth [m] 0.3–68.0 (e)

θinit Initial soil water content of entire soil profile [vol/vol] 0.00–θsat
(f)

θsat Saturated water content of entire soil profile [vol/vol] 0.31–0.56 (f)

θfc Soil water content at field capacity of entire soil profiles [vol/vol] 0.10–θsat
(f)

K Saturated soil lateral hydraulic conductivity [m/d] 1–230 (g)

DKc Detachability of clay particles by rainfall [g/J] 0.10–1.50 (h)

DKz Detachability of silt particles by rainfall [g/J] 0.50–5.15 (h)

DKs Detachability of sand particles by rainfall [g/J] 0.15–4.15 (h)

DRc Detachability of clay particles by surface runoff [g/mm] 0.020–2.0 (h)

DRz Detachability of silt particles by surface runoff [g/mm] 0.016–1.6 (h)

DRs Detachability of sand particles by surface runoff [g/mm] 0.015–1.5 (h)

PI Area proportion of the permanent interception of rainfall [proportion] 0–1
IMP Area proportion of the impervious ground cover [proportion] 0–1
GC Area proportion of the ground cover of the soil surface

protected by vegetation or crop cover on the ground
[proportion] 0–1

CC Area proportion of the canopy cover of the soil surface
protected by vegetation or crop canopy

[proportion] 0–1

PH Average height of vegetation or crop cover of an element
where leaf drainage starts to fall

[m] 0–30 (h)

D Average diameter of individual plant elements at the surface [m] 0.00001–3.0 (h)

NV Number of individual plant elements per unit area [number/m2] 0.00001–2000 (h)

d Typical flow depth of surface runoff in an element [m] 0.005–3 (h)

n Manning’s roughness coefficient of the soil surface [s/m1/3] 0.01–0.05 (i)

Notes: (a) is based on WMO; (b) is based on Senay et al. (2008), Jia et al. (2009); (c) represents the range of
slope from a flat surface to a vertical cliff; (d) is based on Lilhare et al. (2014), Arnhold et al. (2013), Pandey
et al. (2009); (e) is based on the range of rooting depth from Canadell et al. (1996); (f) is based on Saxton et al.
(1986); (g) is based on the hydraulic conductivity of semi-pervious soils from Irmay (1968); (h) is based on
Morgan and Duzant (2008); (i) is based on Manning’s n of bare soil in Table 3.6 from Morgan (2005).

3.3.2 Testing the DMMF Model in the Field

We applied the DMMF model to two potato fields (field 1 and field 2) in the Haean-Myeon

catchment, South Korea, previously described by Arnhold et al. (2013) to test the validity of the

model. The fields are located on erosion-prone hillslopes with complex surface configurations

of plastic-covered ridges with potatoes and bare soil furrows. Mean annual precipitation in the

study area in 2009 and 2010 was about 1,514 mm, with 50 to 60% of the annual rainfall concen-

trated during the summer monsoon season from June to August (Arnhold et al., 2013). Soils

of the fields range from sandy to silty loams, with higher proportions of clay and silt in field 2.

Field 1 is located on a concave hillslope with a topographical depression along the center line of
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Fig. 3.5. Sobol’ total indices of model input parameters for a single element. The bars indicate
the Sobol’ total indices and the error bars indicate the 95% confidence intervals of the indices
from bootstrapping.

the field, and the field 2 is on a concave slope without any topographical depressions. Both fields

have an average slope angle of about 9° and a slope length of about 25 m. On each field, runoff

and sediment loss were measured by three 5 m wide runoff samplers for seven rainfall periods

with a variety of rainfall characteristics and time intervals in the monsoon season from 5 July to

10 August 2010 (Arnhold et al., 2013). These conditions in both fields are suitable for testing the

model at a variety of temporal rainfall periods including the new concept of impervious areas.

We used available measured and estimated input parameters to test the model. Digital elevation

models (for S, w and l), R, RI, SD, n, Pc, Pz, Ps, θinit, CC, and PH were obtained from Arn-

hold et al. (2013). For ET , we utilized the MODIS/Terra Evapotranspiration (ORNL DAAC,

2014), because it provides an 8-day sum of ET data based on the modified Penman-Monteith

equation (Mu et al., 2011). For unmeasured input parameters (θsat, θfc, K, PI, GC, NV , D,

DKc, DKz, DKs, DRc, DRz, DRs, and d), site-specific sensitivity analyses were performed to

determine the required parameters to be adjusted, which is recommended under the situation of

limited data availability. We selected parameters for calibration when one of their Sobol’ total

index values from field 1 or field 2 was larger than 0.05 (i.e., contribute 5% of the total variance of

the model output). For parameters related to soil detachability (i.e.,DKc,DKz,DKs,DRc,DRz,

andDRs), we used a wide range of parameters from zero to maximum values as given in Table 4.1.

We set the range of K according to ranges of the optimized vertical hydraulic conductivities

from Ruidisch et al. (2013), who conducted hydrological studies on the same fields. The up-
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per boundary was defined by multiplying K by 18 to consider the average ratio of lateral

to vertical hydraulic conductivities of the hillslope (Brooks et al., 2004). The range of d was

set from 0.005 (unchanneled flow) to 0.01 (shallow rill) from Morgan and Duzant (2008),

considering surface conditions of both fields. Ranges of θsat were estimated from Saxton

et al. (1986) using soil texture of each field. Ranges of θfc were derived from ranges of ini-

tial soil water content before rainfall, because excess soil water usually drained away two or

three days after the soil was fully saturated by rainfall. Initial soil water contents from Arn-

hold et al. (2013) were measured between one and three days after previous rainfall events

ended. We adjusted the other parameters using a range of ±20% of guide values given in

Morgan and Duzant (2008). The detailed range of parameters for sensitivity analysis is listed

in Table 3.2. According to the result, K, θsat, and θfc showed relatively high impacts on the

Table 3.2. Range of unmeasured parameters for sensitivity analysis.

Field θsat θfc K PI GC NV D DKc DKz DKs DRc DRz DRs d

Field 1 Sup. 0.454 0.351 17.9 0.144 0.48 5.4 0.12 1.50 5.15 4.15 2.0 1.6 1.5 0.010
Inf. 0.351 0.345 0.29 0.096 0.32 3.6 0.08 0 0 0 0 0 0 0.005

Field 2 Sup. 0.494 0.435 5.22 0.144 0.48 5.4 0.12 1.50 5.15 4.15 2.0 1.6 1.5 0.010
Inf. 0.435 0.407 0.15 0.096 0.32 3.6 0.08 0 0 0 0 0 0 0.005

∗ Sup. indicates upper bound of a range (Supremum) and Inf. indicates lower bound of a range (Infimum).

amount of surface runoff and sediment loss from an element. DRc, DRz, DRs and d show

relatively high impacts (over 0.1) on sediment loss result (see Figure 3.6). These seven pa-

rameters have high in-situ variations as well (Morgan and Duzant, 2008, Brooks et al., 2004,

Boll et al., 1998). We calibrated the model by adapting K, θsat, θfc, DRc, DRz, DRs and d

with the same range of parameters used in the sensitivity analysis. For parameters with rela-

tively low impacts on the model results, we used reference values for potato fields from Morgan

and Duzant (2008). We used the differential evolution (DE) optimization method (Storn and

Price, 1997) for model calibration through the “DEoptim” package (Ardia et al., 2015) using

R version 3.2.3 (R Core Team, 2015). The DE algorithm is a heuristic optimization method

with an evolution strategy to find the global minimum of a real-valued model of real-valued

parameters. It is suitable for non-differentiable, nonlinear and multimodal models. Therefore,

the DE algorithm and its variants have been successfully applied to a variety of fields (Storn

and Price, 1997, Ardia et al., 2015, Mullen et al., 2011) and have been used for hydrological

model calibration (Joseph and Guillaume, 2013, Zheng et al., 2015). To find the best parameter

set for the model output, we used the root mean square error (RMSE) between model outputs

and the field measured data as the objective function for the DE algorithm. Because the sur-
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Fig. 3.6. Sobol’ total indices for runoff (Q) and sediment loss (SL) of the two field sites. Bars
indicate the Sobol’ total indices and the error bars indicate the 95% confidence intervals of the
indices from bootstrapping. We checked the sensitivity of the model to the parameters with
high uncertainty due to absence of field data, such as parameters related to soil detachability
(i.e., DKc, DKz, DKs, DRc, DRz, and DRs), soil hydraulic parameters (i.e., K, θsat, and θfc),
vegetation structural parameters (i.e., GC, D, NV ), the permanent interception (PI), and the
rill depth (d). K, θsat and θfc showed relatively high impacts on the runoff (Q) and the sediment
loss (SL). The sediment loss (SL) also showed high sensitivity to DRc, DRz, DRs and d.

face runoff is one of the main drivers of sediment processes, we optimized K, θsat, and θfc for

the surface runoff (Q) and then, with these optimized parameters, we optimized DR, and d

for sediment loss (SL). Values of optimized parameters from the DE algorithm are listed in

Table 3.3. The optimized K for each field is in the range of optimized (for field 1) and esti-

Table 3.3. Optimized parameters from the DE algorithm.

K θsat θfc DRc DRz DRs d

Field 1 0.500 0.362 0.345 0.015 0.012 0.011 0.010
Field 2 0.284 0.453 0.435 0.007 0.005 0.005 0.005

mated (for field 2) vertical hydraulic conductivity from Ruidisch et al. (2013). It means that

the lateral hydraulic conductivity of the entire soil profile is affected not only by the top soil

layer but also by other deeper layers with low hydraulic conductivities. The optimized θsat for

each field has a relatively higher value than the corresponding optimized values from Ruidisch

et al. (2013). The higher values are possible because the model considers the entire soil profile,

including deeper soil layers with higher saturated soil water contents. The optimized θfc values

for both fields are consistent with the values for silt loam (0.35) for field 1 and silt clay loam

(0.42) for field 2 from Morgan and Duzant (2008). The optimized DR values are lower than
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those in the ranges of DR for sensitivity analysis from Morgan and Duzant (2008). However,

the optimized values are possible because the values were induced from laboratory data from

Quansah (1982) and possess a significant amount of uncertainty according to Morgan and

Duzant (2008). Finally, the optimized d indicates that field 1 has shallow rills and field 2 has a

comparatively smooth surface, which are consistent with actual field surface conditions. With

the optimized parameters, we tested the model with three other statistical criteria for evaluating

the model performance: the Nash-Sutcliffe efficiency (NSE), the percent bias (PBIAS), and the

ratio of RMSE to the standard deviation of the observation (RSR). A model is considered to be

acceptable when it has an NSE value larger than 0.5, a PBIAS value in the range ±25%, and a

RSR value less than or equal to 0.7 (Moriasi et al., 2007). The testing results of the model are

acceptable for both runoff and sediment loss (Figure 3.7).

The test results from field 2 show better performance than those from field 1. The putative

causes of the differing model performance for two fields are data gaps due to damages of a

runoff collector in field 1. This collector covered a large proportion of the field area and, thus,

might have strongly affected outputs of the entire field (Arnhold et al., 2013). Although data

gaps were also present in field 2, contributing areas of each runoff collector were rather similar,

which decreased the influence of an individual collector on the average output of the entire field

(see Figure 2 and Table 2 in Arnhold et al. (2013)). Further, model performance for runoff is

better than that for sediment loss for both fields. The poorer performance for sediment loss

than for runoff is assumed to be caused by error propagation of runoff as the main driver of

sediment loss. Although more evenly distributed observed data are desirable for better model

performance testing, observation data were clustered into low and high extremes due to the

highly irregular rainfall pattern of the Monsoon climate and the limited period of observation.

3.4 Summary and Conclusions

In this study, we present a new soil erosion model, the Daily based Morgan–Morgan–Finney

(DMMF) model, which is suitable for estimating surface runoff and soil erosion of a complex

surface terrain within an intensive seasonal rainfall region. The DMMF model is based on the

simple conceptual soil erosion model, the Modified Morgan–Morgan–Finney model, with several

modifications. First, the temporal scale of the model changed from an annual to a continuous

daily scale. Second, we added a new surface cover type of impervious area that highly affects

runoff generation and soil redistribution patterns. Third, we revised the main equations and

rearranged the sequence of the subprocesses for a better physical representation of the model.



CHAPTER 3. DAILY BASED MORGAN–MORGAN–FINNEY (DMMF) MODEL 80

[scale=.9]

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Observed runoff (L m2)

S
im

u
la

te
d

 r
u

n
o

ff
 (

L
m

2 )

F
ie

ld
 1

Runoff

RMSE 11.00
NSE 0.69

PBIAS −9.50
RSR 0.52

1:1 line

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Observed soil loss (kg m2)

S
im

u
la

te
d

 s
o

il
 l

o
ss

 (
k

g
m

2 )

Soil loss

RMSE 0.07
NSE 0.63

PBIAS 17.00
RSR 0.57

1:1 line

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Observed runoff (L m2)

S
im

u
la

te
d

 r
u

n
o

ff
 (

L
m

2 )

F
ie

ld
 2

Runoff

RMSE 2.25
NSE 0.99

PBIAS 0.30
RSR 0.10

1:1 line

0.00 0.01 0.02 0.03 0.04

0.
00

0.
01

0.
02

0.
03

0.
04

Observed soil loss (kg m2)

S
im

u
la

te
d

 s
o

il
 l

o
ss

 (
k

g
m

2 )

Soil loss

RMSE 0.00
NSE 0.95

PBIAS −2.60
RSR 0.21

1:1 line

Fig. 3.7. Comparison between simulated and observed runoff (Q) and sediment
loss (SL) for field 1 and field 2. We tested the model performance for both
fields with optimized parameters (Table 3.3). Model performance was evalu-
ated using the Nash-Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS),
and RMSE-observation standard deviation ratio (RSR) with the observed data from
Arnhold et al. (2013). To make all overlapping points with values close to zero visible, we
slightly jitterred the points.

In the hydrological phase, we revised the effective rainfall and the interflow equations. In the

sediment phase, we modified the flow velocity equations, the transport capacity equations,

and the sediment input sequence.

Owing to these modifications, the DMMF model offers expanded temporal and spatial ap-

plicability while retaining the advantages of the MMMF model. Temporally, the model can

estimate short- and long-term soil erosion flexible in regions with concentrated seasonal rainfall

for which the annual-based MMMF model is not suitable. Spatially, the model can estimate
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runoff and soil erosion for complex surface configurations with plastic mulching, pavements and

so on by introducing the proportion of the impervious area. Furthermore, the model repre-

sents the effect of vegetation on soil erosion by utilizing easy-to-measure vegetation structure

information, in contrast to other soil erosion models that require either detailed vegetation

information or empirical relationships between vegetation and erosion. This feature enables the

model to estimate spatiotemporal patterns of runoff and soil loss from non-conventional crop

fields (e.g., ginseng fields in South Korea) for which only little is known about the role of the

vegetation and practices such as impervious covers on soil conservation potentials. According

to the sensitivity analysis and field application results, the DMMF model showed reasonable

responses to parameters, which agrees with the model assumptions. The model also showed

acceptable performances for both runoff and sediment loss predictions when it was tested on two

potato fields with different topographic and soil characteristics in seven different rainfall periods

of the monsoon season. Those results demonstrate that the new model is capable of simulating

surface runoff and soil redistribution patterns at various temporal scales of monsoonal rainfall

in crop fields with impervious cover.

As more national- and continental-wide topographic, soil and land use data (e.g., European

Soil Data Centre (Panagos et al., 2012)) are becoming available, increasing attempts have been

made to apply soil erosion models at larger scales (Panagos et al., 2015). Because the DMMF

model is designed for field and catchment scales, and has not yet been tested at larger scales, it

is challenging at this time to directly estimate runoff and soil erosion at national and continental

scales. However, the model may contribute to large scale modeling by providing appropriate

parameters on non-conventional cultivation fields where insufficient information is available, to

be used in large scale model approaches such as USLE and RUSLE.

We conclude that DMMF can be useful to establish soil and water conservation measures

in intensively used agricultural lands with complex surface configurations composed of multi-

ple crop types, artificial structures, and plastic mulching by estimating spatiotemporal runoff

and sediment redistributions and by identifying erosion and deposition hotspots under varying

conditions. Since model performance to date was tested for a single land use type and with a

limited amount of observation data with data gaps, further studies are required to validate the

model’s utility at extended temporal and spatial scales under various rainfall patterns and land

use types as well as to provide appropriate parameterizations of non-conventional crop fields

for large scale modeling.
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Abstract

Upland agricultural expansion and intensification cause soil erosion, which has a negative impact on the

environment and socioeconomic factors by degrading the quality of both nutrient-rich surface soil and

water. The Haean catchment is a well-known upland agricultural area in South Korea, which generates

a large amount of sediment from its cropland. The transportation of nutrient-rich sediment to the

stream adversely affects the water quality of the Han River watershed, which supports over twenty

million people. In this paper, we suggest a spatially explicit mitigation method to reduce the amount
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of sediment yield to the stream of the catchment by converting soil erosion hot spots into forest. To

evaluate the effectiveness of this reconfiguration, we estimated the sediment redistribution rate and

assessed the soil erosion risk in the Haean catchment using the daily based Morgan–Morgan–Finney

(DMMF) model. We found that dry crop fields located in the steep hill-slope suffer from severe soil

erosion, and the rice paddy, orchard, and urban area, which are located in a comparatively lower and

flatter area, suffer less from erosion. Although located in the steep hill-slope, the forest exhibits high

sediment trapping capabilities in this model. When the erosion-prone crop lands were managed by

sequentially reconfiguring their land use and land cover (LULC) to the forest from the area with the

most severe erosion to the area with the least severe erosion, the result showed a strong reduction in

sediment yield flowing to the stream. A change of 3% of the catchment’s crop lands of the catchment

into forest reduced the sediment yield entering into the stream by approximately 10% and a change of

10% of crop lands potentially resulted in a sediment yield reduction by approximately 50%. According

to these results, identifying erosion hot spots and managing them by reconfiguring their LULC is

effective in reducing terrestrial sediment yield entering into the stream.

Keywords: DMMF; landscape configuration; landscape ecology; hydrology

4.1 Introduction

Agriculture expansion and intensification often lead to severe soil erosion in the course

of altering naturally dominated surface configurations (Hu et al., 2000, Lee, 2009, Maharjan

et al., 2016). The problem is prominent in upland agriculture areas under monsoonal climate

because of the disturbed erosion-prone hill-slopes receiving intermittent concentrated heavy

rainfall (Lee et al., 2003, Ali and Reineking, 2016). A large amount of surface runoff from

heavy rainfall washes out nutrient-rich surface soil from deforested upland agriculture areas and

degrades the soil quality of the agricultural area (Jeon et al., 2017). Eroded nutrient-rich soil

particles cause not only soil quality degradation of the agricultural area but also on- and off-site

water deterioration when these particles enter the stream of a catchment (Pimentel et al., 1995,

Pimentel and Kounang, 1998, Lal, 2001).

The Han River watershed in South Korea experiences extreme downpours that cause severe

soil erosion and subsequent water deterioration every summer monsoon season (Maharjan et al.,

2016, Yoon and Hyoseop, 2000, Arnhold et al., 2013). These problems are worsening, as upland

agricultural areas expand and the intensity of monsoonal rainfall increase due to ongoing climate

change (Park et al., 2010, Stocker et al., 2013). The Han River is the primary freshwater
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source for the Seoul Metropolitan area where over 25 million inhabitants (ca. 50% of the

South Korean population) reside. Therefore, soil erosion control in this region is highly relevant

to provide clean and usable freshwater resources to the residents (Chang, 2008, Choi et al.,

2017). With increasing demand for food crops, intensive upland agriculture is expanding in the

mountainous upstream regions of the Han River watershed where few agricultural activities had

been performed previously (Lee, 2009). The Haean catchment is one of the largest contributors

to sediment in the watershed, where abrupt land use and land cover (LULC) changes have

taken place on forested hill-slope areas (Arnhold et al., 2013, Ruidisch et al., 2013, Arnhold

et al., 2014). The LULC changes on the erosion-prone hill-slopes of this catchment generate

a massive amount of sediment flowing into the river system and eventually deteriorate the

water quality of the Han River (Maharjan et al., 2016). Various studies have been conducted

in this catchment to understand the sediment redistribution patterns and determine optimal

measures to mitigate this problem. Field-level studies have focused on the effect of surface

configurations of the dry croplands and their field margins on sediment yields. Arnhold et al.

(2013) and Ruidisch et al. (2013) investigated the effect of plastic mulch applied to dry croplands

on surface runoff and sediment yield. Ali and Reineking (2016) showed the effectiveness of natural

field margin (i.e., vegetated filter strip next to the dry cropland) for preventing off-site sediment

yield. They reported that the natural field margin captured sediments more efficiently under the

increased rainfall and slope conditions than intensively managed field margins with less dense

vegetation cover. Arnhold et al. (2014) found that organic farming yielded less sediment than

conventional farming because organic farming tends to protect the soil surface by preserving

more vegetations that are not cultivated crops.

At the catchment level, the soil and water analysis tool (SWAT) (Arnold et al., 1998) has been

widely used to test the effectiveness of various best management practices (BMPs) to reduce

the sediment yield under complex terrain and landscape configurations (Maharjan et al., 2016,

Jang et al., 2017). Maharjan et al. (2016) showed the effectiveness of catchment-wide cover crop

cultivation in the dry croplands to reduce suspended sediment yields entering the stream. Jang

et al. (2017) projected vegetation filter strip, rice straw mulching, and fertilizer control scenarios

to dry croplands of the catchment and found that the application of vegetation filter strips and

rice straw mulching was efficient in reducing sediment yields from the catchment. The BMPs

suggested in the aforementioned studies are often premised on the compliance of each stakeholder,

which is not easily accomplished (Fujisaka, 1994, Pannell, 1999, Poppenborg and Koellner, 2013).

Different from the BMP approaches relying on stakeholders participation, several studies are

paying attention to the importance of the landscape and its spatial configuration, which has a
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significant impact on ecosystem services and functions, including soil erosion and water quality

control (Chaplin-Kramer et al., 2015, 2016, Lee, 2017). Furthermore, these studies showed that

ecosystem services and functions often responded non-linearly to the spatial relocation of the

agricultural landscape, implying the effectiveness of spatial configuration on enhancing ecosystem

services (Chaplin-Kramer et al., 2015, 2016, Polasky et al., 2008). Therefore, identifying soil

erosion hot spots and assessing the sediment reduction rate by altering the surface configuration

of hot spots promise to help establishing cost-effective soil erosion control methods in the

catchment.

To consider the spatial context of soil erosion, a spatially explicit and distributed soil erosion

model that can simulate the sediment budget of each element, considering the sediment inputs

from the upslope areas is needed. Among the various soil erosion models, the daily based

Morgan–Morgan–Finney (DMMF) model (Choi et al., 2017) is one of the most appropriate

tools because the model can project soil erosion and deposition explicitly, considering the spatial

connectivity, which facilitates the assessment of the impact of the spatial context of landscape

on sediment redistribution patterns. Furthermore, the DMMF is suitable for projecting under a

monsoon climate, accompanying concentrated rainfall during a short period (Choi et al., 2017).

Vegetative filter strips (VFSs) are known as an effective tool for reducing sediment yield from

the field or catchment because of their cost-effective surface protecting and sediment trapping

capabilities (Ali and Reineking, 2016, Jang et al., 2017, Lee, 2017, Dillaha et al., 1989, Delgado

et al., 1995, Muñoz-Carpena et al., 1999). We adopt the forest, which is a type of VFS, as

an alternative LULC for soil erosion hot spots to reduce the total sediment yield into the

stream of the catchment. In this study, we assessed the importance of the spatial conversion

of erosion hot spots into forest on soil erosion control using the spatially explicit daily based

Morgan–Morgan–Finney (DMMF) soil erosion model. The detailed objectives are to:

1. determine the applicability of the DMMF model for stream discharge and suspended

sediment in the Haean catchment,

2. estimate the sediment redistribution pattern and assess the soil erosion risk of the Haean

catchment, and

3. evaluate the impact of the spatial reconfiguration of erosion hot spots into forest on soil

erosion control.
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4.2 Materials and Methods

4.2.1 Study Area

The study was conducted in the Haean catchment (Figure 4.1). The Haean catchment is a

bowl-shaped small mountainous erosion basin (64.4 km2) located in the northeastern part of

South Korea (38.277° N, 128.135° E). As an erosion basin, the central area is low and flat, and

it becomes higher and steeper toward the boundary. The lowest altitude of the catchment is

339 m, and the highest one is 1,321 m (Lee, 2009, Maharjan et al., 2016, Arnhold et al., 2013,

Shope et al., 2014). Geologically, the catchment consists primarily of two bedrocks. One is

gneiss at the higher elevation near the catchment boundary, and the other is highly weathered

granite at the flat central area (Lee, 2009, Shope et al., 2014). Differential erosion between the

two bedrocks formed the unique bowl-shaped catchment (Lee, 2009). The major soil type of

the catchment is cambisol from weathered granite. The dominant soil texture of the catchment

is loamy sand (59.4%) followed by sandy loam (27.5%), and sand (10.5%), which has a high

infiltration capacity (Maharjan et al., 2016, Shope et al., 2014).

The climate of the catchment is characterized by cold and dry winter, affected by the

continental Siberian high, and hot and humid summer affected by the subtropical North Pacific

high (Shope et al., 2014, Park et al., 2011, Bartsch et al., 2013). The average annual precipitation

from 2009 to 2011 is 1,599 mm, and almost 70% of the rainfall is concentrated in the three months

from June to August (Maharjan et al., 2016, Arnhold et al., 2013, Jang et al., 2017, Shope et al.,

2014). Due to climate change, the period of rain spell, as well as the frequency and intensity of

heavy rainfall, has increased in this region (Ha et al., 2005, Jung et al., 2011).

The dominant land cover type of the catchment is forest. Forest mainly covers the summit

and upper hill-slope areas around the boundary of the catchment, occupying 58% of the entire

catchment area. Dry croplands (22%), including bean, cabbage, potato, radish, and ginseng,

dominate the lower hill-slope areas adjacent to the forest edge. Rice paddies (8%) and residential

areas (3%) (e.g., roads and artificial structures) occupy the flat central area of the catchment.

Semi-natural vegetation field (8%), shrublands (1%), and bare surface (5%), including fallow

and barren field, cover the remaining areas (Seo et al., 2014).

The dry croplands have been expanded into the forest that is located in the hill-slope area.

Due to the upland agriculture expansion after deforestation, the catchment yields a massive

amount of sediment into the stream during the summer monsoon season. The sediment is

transported to the Soyang reservoir. This reservoir is the largest reservoir in South Korea as well
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as the crucial freshwater source for citizens living in the Seoul metropolitan area (Maharjan et al.,

2016, Arnhold et al., 2013, Shope et al., 2014). Weather stations and hydrological measurement

facilities are installed in the catchment to monitor the climate and stream conditions, and

erosion control dams and the reservoir have been constructed to reduce the sediment yield from

the catchment (Shope et al., 2014, Jeon and Kang, 2010).

Fig. 4.1. General description of the study area. Locations of the Soyang lake watershed and
Haean catchment in South Korea are described in the lower left figure. In the upper right figure,
the topography and stream networks of the study area, with the monitoring sites (red triangles)
and weather stations (yellow circles) used for the DMMF model are presented.

4.2.2 Model Description

We used the DMMF model (Choi et al., 2017) to assess the soil erosion risk and simulate the

impact of the spatial reconfiguration of erosion hot spots into forest on sediment yield within

the Haean catchment The DMMF model was modified from the widely used Morgan–Morgan–

Finney (MMF) soil erosion model (Morgan et al., 1984), which has a simple structure while

maintaining physical foundations (Choi et al., 2017, Morgan, 2001, Vigiak et al., 2005, Morgan

and Duzant, 2008, Lilhare et al., 2014).

The DMMF model has three significant modifications relative to the MMF model: the

adoption of a daily time step, the consideration of the effect of impervious ground cover on

soil erosion, and the revision of the equations and sequence of the subprocesses for a better

physical representation of physical processes, such as surface runoff and sediment redistribution
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(Choi et al., 2017, Choi et al., 2016). These modifications enable the model to be more suitable

for estimating surface runoff and soil erosion on a complex surface terrain under an intensive

seasonal rainfall regime than the previous version.

The DMMF model can estimate the amount of surface and subsurface water input from the

upslope area and output to the downslope area after hydrological processes for each element

(e.g., each grid cell in a raster map). The model also estimates the sediment budget of each element

by calculating the amount of sediments flowing into and out of the element. The hydrological

processes of the model are determined by rainfall, evapotranspiration, surface/subsurface water

inflows, and initial soil water content (Figure 4.2). After calculating the water budget for the

element, the model calculates sediment budgets, considering the amount of sediment input from

the upslope areas, rainfall intensity, topography, soil characteristics, surface configurations, and

vegetation structures (Figure 4.3). The detailed input parameters are presented in Table 4.1

and detailed structure and equations are described in the Appendix 4.A.

Upper-slope
elements

Hydrological processes
in an element

Lower-slope
elements

Surface
Subsurface

Effective rainfall

Inflows of surface runoff
from upper-slope elements

ET

Surface runoff
from an element

Percolation

Inflows of interflows
from upper-slope elements

Initial soil water

Interflow
from an element

Remaining soil water

Fig. 4.2. Schematic hydrological phase of the DMMF model (modified from Figure 3 of Choi
et al. (2017)).

In contrast with the SWAT model, which has been frequently applied to this catchment,

the DMMF model can estimate the erosion and deposition of an element, considering the

interconnectivity with adjacent elements. Therefore, the model can be used to estimate the

impact of the spatial reconfiguration of erosion hot spots into forest on sediment yields more

explicitly for each element and the entire catchment.
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Fig. 4.3. Schematic sediment phase of the DMMF model (modified from Figure 4 of Choi et al.
(2017)).

Table 4.1. Input parameters of the daily based Morgan–Morgan–Finney (DMMF) model (modi-
fied from Table 1 of Choi et al. (2017))

Type Parameter Description Unit

Topography S Slope angle (rad)
res Grid size of a raster map (m)

Climate
R Daily rainfall (mm/d)
RI Mean rainfall intensity of a day (mm/h)
ET Daily evapotranspiration (mm/d)

Soil

Pc Proportion of clay in the surface soil (proportion)
Pz Proportion of silt in the surface soil (proportion)
Ps Proportion of sand in the surface soil (proportion)
SD Soil depth (m)
θinit Initial soil water content of the entire soil profile (vol/vol)
θsat Saturated water content of the entire soil profile (vol/vol)
θfc Soil water content at field capacity of the entire soil profile (vol/vol)
K Saturated soil lateral hydraulic conductivity of the entire soil profile (m/d)
DKc Detachability of clay particles by rainfall (g/J)
DKz Detachability of silt particles by rainfall (g/J)
DKs Detachability of sand particles by rainfall (g/J)
DRc Detachability of clay particles by surface runoff (g/mm)
DRz Detachability of silt particles by surface runoff (g/mm)
DRs Detachability of sand particles by surface runoff (g/mm)

LULC

PI Area proportion of the permanent interception of rainfall (proportion)
IMP Area proportion of the impervious ground cover (proportion)
GC Area proportion of the pervious ground cover of the soil surface (proportion)
CC Area proportion of the canopy cover of the soil surface (proportion)
PH Average height of vegetation or crop cover (m)
D Average diameter of individual plant elements at the surface (m)
NV Number of individual plant elements per unit area (number/m2)
da Typical flow depth of surface runoff (m)
n Manning’s roughness coefficient of the soil surface (s/m1/3)
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4.2.3 Model Parameterization

As shown in Table 4.1, the DMMF model requires the topography, climate, soil, and LULC

datasets to project surface runoff and sediment redistribution patterns of the catchment.

Topography data (i.e., the slope angle (S) and grid size of a raster map (res)) were derived

from the digital elevation model (DEM) with 30 m resolution. The parameter res is used to

calculate the width (w) and length (l) of an element that are equivalent to res and res/cos(S),

respectively (Choi et al., 2017).

Climate data were obtained from two sources. The daily rainfall (R) and mean rainfall

intensity of a day (RI) were obtained from weather stations installed in the catchment, and

the evapotranspiration (ET ) was obtained from remote sensing data provided by the Moderate

Resolution Imaging Spectroradiometer (MODIS) (ORNL DAAC, 2008). We estimated R and

RI from each weather station and spatially interpolated them using inverse distance weighted

(IDW) method, which showed the optimal result on this catchment among four methods such

as inverse distance weighted, spline, nearest neighbor, and kriging, according to Shope et al.

(2014). For the ET , we resampled the 8-day average MODIS/Terra Evapotranspiration data to

fit to the DEM of this catchment.

The soil data set covers the texture, depth, hydraulic properties, and detachabilities. The

soil texture (i.e., the proportion of clay (Pc), silt (Pz), and sand (Ps) in the surface soil), soil

depth (SD), and soil hydraulic properties (i.e., saturated soil water content (θsat), soil water

content at field capacity (θfc), and saturated lateral hydraulic conductivity (K) of the entire

soil profile) were derived from a 2009 catchment-wide field survey from the TERRECO project

(see Table 4.2 and Figure 4.4) (Shope et al., 2014).

Table 4.2. Typical soil characteristics of each represented soil class of the Haean catchment from
a 2009 catchment-wide field survey from TERRECO project.

Classification SD Pc Pz Ps θsat
∗ θfc

∗ K∗

Very steep forest 2.55 0.17 0.33 0.50 0.47 (0.41–0.53) 0.21 (0.06–0.31) 1.97 (0.63–4.55)
Forest 4.38 0.22 0.35 0.43 0.45 (0.41–0.54) 0.17 (0.06–0.33) 2.18 (0.63–4.55)

Moderate to steep dry field 2.18 0.08 0.29 0.64 0.36 (0.34–0.39) 0.18 (0.17–0.20) 0.33 (0.18–0.66)
Flat dry field 4.85 0.03 0.15 0.82 0.36 (0.34–0.41) 0.18 (0.08–0.25) 0.49 (0.09–2.25)
Rice paddy 1.60 0.07 0.32 0.62 0.37 (0.36–0.39) 0.16 (0.14–0.18) 0.50 (0.41–0.72)

Sealed ground 2.00 1.00 0.00 0.00 - - -
∗ θsat, θfc, and K were estimated with the model ROSETTA Lite v.1.1 (Schaap et al., 2001). The
numbers in parentheses indicate the range of values of soil layers that constitute each represented soil
class.

Reference values for soil detachability from Morgan and Duzant (2008) were used as the

initial values of soil detachability by rainfall (i.e., for clay (DKc), silt (DKz), and sand (DKs))
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Fig. 4.4. Represented soil class from a 2009 catchment-wide field survey from the TERRECO
project.

and by runoff (i.e., for clay (DRc), silt (DRz), and sand (DRs)). We assumed that the initial

soil water content of the entire soil profile (θinit) is equal to the soil water content at field

capacity (θfc) by starting the simulation at three days after the first heavy rainfall of the year,

because the excess soil water was usually drained away two or three days after the soil was fully

saturated by rainfall.

The LULC types characterize the physical structures of surface and vegetation, which regulate

the quantity of surface runoff and runoff velocity. Surface structures incorporate a portion of the

impervious cover area (IMP ), such as plastic mulching and paved facilities, flow depth of surface

runoff (da), and Manning’s roughness coefficient of the soil surface (n). Vegetation structures

contain the permanent interception of rainfall (PI), pervious ground cover (GC), canopy cover

(CC), average vegetation height (PH), average diameter of individual plant elements at the

surface (D), and number of individual plant elements per unit area (NV ). LULC parameters

were derived based on the LULC map of the Haean catchment in the year 2010 from Seo et al.

(2014) (see Figure 4.5).

We classified the original LULCs into 14 categories (i.e., forest, rice paddy, semi-natural,
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Fig. 4.5. LULC classes and their spatial configurations for the Haean catchment in the year
2010 (Seo et al., 2014).

bare soil, ginseng, potato, bean, radish, cabbage, other dry crops, shrub, orchard, urban, and

water bodies). Forest, rice paddy, semi-natural, bare soil, ginseng, potato, bean radish, and cab-

bage are major LULCs that covered more than 1% of the catchment area. Minor LULCs were

aggregated into groups of other dry crops, shrub, orchard, urban, and water bodies according to

their physical characteristics. We used field measurement data of CC, PH, NV , IMP , da, and

n for major dry crops such as bean, cabbage, potato, and radish, whose data were obtained from

the field campaign of the TERRECO project, which was also used in Arnhold et al. (2014). The

daily forest CC was estimated using the average values of 8-day normalized difference vegeta-

tion index (NDVI) for forest in the catchment from MODIS (ORNL DAAC, 2017, Didan, 2015).

The average NDVI values were converted to canopy cover (CC), using the equation suggested by

Gutman and Ignatov (1998). LULC parameters for rice and ginseng, and the average diameter

of individual plant elements (D) for major dry crops were obtained from agricultural technology

portal provided by Rural Development Administration of South Korea (RDA) (Rural Develop-

ment Administration of South Korea, 2018). The average LULC parameters of major dry crops

were used for the LULC parameters of other dry crops, while the guide values from Morgan and



CHAPTER 4. EFFECT OF SPATIAL RECONFIGURATION ON REDUCING STREAM SEDIMENT
LOAD 101

Duzant (2008) were adopted for other LULC parameters. Detailed initial parameter settings

are presented in Table 4.3.

Table 4.3. The initial parameter settings for each LULC class.

LULC Leaf-out (a) Leaf-fall (a) PI (b)

IMP (c) GC (d) CCmax
(e) PH (f ) D (g) NV (h) da

(i) n (j)
(Planting) (Harvest)

Forest 112 307 0.20 0.00 1.00 0.95 30.0 2.00 0.60 0.100 0.20
Semi-natural 112 307 0.30 0.00 1.00 0.95 0.50 0.01 500 0.100 0.20

Shrub 112 307 0.20 0.00 0.30 0.95 0.50 0.12 20 0.100 0.20
Rice paddy 136 283 0.30 0.00 1.00 (0.00) 0.80 1.00 0.04 200 0.050 0.10

Potato 120 243 0.12 0.50 (0.00) 0.00 (0.26) 0.71 0.45 0.10 6.00 0.150 0.10
Bean 147 304 0.20 0.50 (0.50) 0.00 (0.58) 0.89 0.70 0.02 6.00 0.150 0.10
Radish 153 235 0.15 0.50 (0.25) 0.00 (0.14) 0.64 0.48 0.06 6.00 0.150 0.10
Cabbage 140 201 0.25 0.50 (0.50) 0.00 (0.31) 0.85 0.55 0.20 3.64 0.150 0.10

Other dry crops 120 304 0.18 0.50 (0.31) 0.00 (0.32) 0.77 0.57 0.10 5.32 0.150 0.10
Orchard 120 303 0.25 0.00 0.40 0.95 4.00 1.50 0.16 0.050 0.10
Ginseng * 123 298 0.20 0.00 0.50 1.00 1.30 0.01 37.5 0.400 0.20
Bare soil - - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.050 0.01
Urban - - 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.005 0.01
(a) Typical leaf-out and leaf-fall dates of each LULC were presented as day of the year (DOY). For annual
crops, the dates represented the typical planting and harvest date of each crop (Shope et al., 2014); (b)

The reference values from Morgan and Duzant (2008) were used for the area proportion of the permanent
interception of rainfall (PI) for each LULC type; (c) IMP for dry fields are different between cultivation
and non-cultivation periods. Values in parentheses represent IMP for non-cultivation periods; (d) GC
for dry fields is different before and after harvest. After harvest, crop residues and weeds remained as the
ground cover of dry fields, according to dry crop data, from the field campaign of the TERRECO project
in 2009. GC for rice paddy in cultivation season was set to one reflecting water-filled condition that
protected the surface from erosion; (e) Because CC values varied with time, we made a list of maximum
CC (CCmax). Semi-natural, shrub, and ginseng utilize fixed reference values from Morgan and Duzant
(2008); (f ) We used fixed reference PH values from Morgan and Duzant (2008) for LULCs of other
than dry crops. Maximum PH values for dry crops were listed from the field measurement data varying
with time; (g) We used fixed reference D values from Morgan and Duzant (2008) for LULCs of other
than dry crops. D values for dry crops utilized typical crop characteristics from Rural Development
Administration of South Korea (2018); (h) We used reference NV values from Morgan and Duzant
(2008) for LULCs of other than dry crops and ginseng. NV values which were estimated from the field
measurement data and Rural Development Administration of South Korea (2018) were used for dry
crops and ginseng, respectively; (i) We assumed shallow rill condition for forest, semi-natural and shrub,
and assumed unchannelled flow condition for bare soil, rice paddy, and orchard using values presented
in Morgan and Duzant (2008). da values for other LULCs derived from furrow heights of the fields,
using field measurement data for dry crops and data from the Rural Development Administration of
South Korea (2018) for ginseng; (j) According to the guide values for Manning’s n from Morgan (2005),
the values of n for natural land covers (i.e., forest, semi-natural, and shrub), crop fields, ginseng, and
smooth surfaces (bare soil and urban) are 0.2, 0.1, 0.2, and 0.01, referring to natural range land, average
tillage conditions, wheat mulching, and smooth bare soil or asphalt conditions, respectively; ∗ The
permeable black awning screen is generally installed 1.3 m above the ginseng field (Rural Development
Administration of South Korea, 2018), and it acts as a plant canopy. Therefore, the cover ratio of the
screen in the field and height of the screen is utilized for canopy cover (CC) and plant height (PH)
values for ginseng.

4.2.4 Model Calibration and Validation

The DMMF model was calibrated and validated for stream discharge and suspended sediment

to test its performance in the Haean catchment. The testing was performed utilizing data from

the year 2010 when the LULC map, as well as the field-measured stream discharge and suspended

sediment data, were well established (Shope et al., 2014, Seo et al., 2014). We confined the testing
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period from the 67th day of the year (DOY), which is three days after first heavy rainfall of the

year, to reduce the uncertainty of initial soil water content by equating it with the soil water

content at field capacity. We equalized the two parameters based on the field measurement

guidelines for soil water content at field capacity, which recommend soil sampling two or three

days after rainfall that is heavy enough to saturate the soil. The three sub-catchments of S1, S2,

and S3 (see Figure 4.1) were selected for model calibration and validation. The data from the S1

and S2 were utilized for two-step calibration, and those from the S3 were used for model validation.

Two-step calibration was performed on the forest-related parameters utilizing the data from the

S1 site, and the other parameters were calibrated utilizing the data from S2. This calibration

method enables us to prevent the significance of forest-related parameters of dominant LULC

type in the entire catchment, from overtaking the importance of other parameters, resulting

in those parameters being ignored. The DMMF model can estimate the outputs of the surface

and subsurface runoff, and the sediment from the elements. However, the measured data are

stream discharge and suspended sediments at the outlet of each sub-catchment. Because the

model does not consider in-stream processes and the impact of groundwater on the base flow

of the stream, it is not appropriate to directly compare the result from the model with the

measured data. To match different comparative objects, we compared the total daily discharge

of each site to total daily surface runoff and subsurface interflow flowing into the stream from

the model, while adding a constant corresponding to base flow from groundwater. To match the

sediment yield from the terrestrial part with the suspended sediments measured at the outlet of

each sub-catchment, we should consider the in-stream sediment processes and impact of erosion

control facilities. Reflecting sediment deposition on the stream bed load, we assumed that only

a part of the terrestrial sediment yield entering the stream was sampled at each measuring

point for each sub-catchment. Therefore, we compared the suspended sediments measured from

the outlet of each measuring point to the sediment flowing into the stream from the model,

multiplied by a constant, reflecting the in-stream sediment process. Our assumptions can be

described as below,

Qm = Qs + IFs +α, (4.1)

SLm = β×SLs. (4.2)

Here, Qm represents the measured daily total discharge, and Qs, IFs, and α represent the

daily surface runoff, daily subsurface interflow simulated from the DMMF model, and a constant

reflecting the base flow from groundwater (unit: m3/s). SLm represents the total daily suspended
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sediments measured at the outlet of each sub-catchment, and SLs and β represent the terrestrial

sediment yield entering the stream from the model simulation and constant representing the

in-stream sediment deposition rate, respectively.

4.2.4.1 Sensitivity Analysis

To select important parameters to be calibrated among unmeasured or highly uncertain

parameters, we performed site-specific sensitivity analyses, using the Sobol’ method (Sobol’,

1993, Saltelli, 2002, Saltelli et al., 2010). The Sobol’ method is a variance based sensitivity

analysis that is widely used in environmental and hydrological modeling, such as SWAT and

TOPMODEL (Nossent et al., 2011, Qi et al., 2013). This method can estimate the total effect

of each parameter on the model output, considering the combined effects among parameters.

Therefore, the Sobol’ method is more suitable for analyzing the sensitivity of non-linear and non-

additive models containing many parameters, as opposed to the local or one-at-a-time (OAT)

methods (Nossent et al., 2011, Saltelli and Annoni, 2010). The relative sensitivity of parameters

is expressed as the Sobol’ total index (SI )—the ratio of the amount of total variance caused

by a parameter to the amount of variance induced from all parameters (i.e., the unconditional

variance of the model) (Saltelli et al., 2010). If we have p-dimensional parameter set, the first-

order sensitivity of the i-th parameter can be described as,

Si =
VXi

(EX−i
(Y |Xi))

V (Y )
, (4.3)

where VX−i
(EXi

(Y |X−i)) is the variance of the model solely by i-th parameter (Xi). Then the

total sensitivity of the i-th parameter (SIi) can be calculated as below,

SIi = 1−
VX−i

(EXi
(Y |X−i))

V (Y )
, (4.4)

where
VX−i

(EXi
(Y |X−i))

V (Y )
indicates that the sum of first-order sensitivities of all parameters

except i-th parameter. Parameters with large SI indicate a relatively high impact on the model

output, while those with small SI indicate a relatively low impact on the model output.

Because the soil hydraulic parameters (i.e., θsat, θfc, and K), soil detachabilities (i.e., DKc,

DKz, DKs, DRc, DRz, and DRs) and LULC parameters (i.e., PI, IMP , GC, CC, PH, D,

NV , d, and n) were not measured or had high uncertainties, their importance was tested on

model outputs. Before performing sensitivity analysis, we set the range of the parameters to be

tested. The ranges of soil hydraulic parameters (i.e., θsat, θfc, and K) were set based on the
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range of estimated values for each represented soil class (see Table 4.2). The upper bound of θfc

was set as the minimum θsat, and the upper bound of K was set to 18 times of the maximum K

to reflect high uncertainty of the parameter (Brooks et al., 2004). The ranges of the un-measured

LULC parameters were set based on the initial parameter settings for each LULC type (see

Table 4.3). We adjusted the parameters using a range of ±100% for the initial parameter settings

for each LULC type. If the upper or lower limits of the proportional parameters is out of the

range between zero to one, we set the lower limits to zero and the upper limits to one. In

this study, SIs for the input parameters were estimated using the “sobolmartinez” function of

the “sensitivity” package (Iooss et al., 2018) on R version 3.5.1 (R Core Team, 2018), a well-

established open-source program for statistical computing, providing many analysis packages.

We used the default bootstrapping option of the function, employing a sample size of 103.

4.2.4.2 Calibration

To find the optimal combination of the parameter set, which allows model outputs to explain

the measured stream discharge and suspended sediments from each site, we performed two-step

calibration. For each step, we adjusted the important parameters with SI greater than 0.05 (i.e.,

contributing 5% of the total variance), and we adjusted the constants for the in-stream processes

(α and β) additionally for sub-catchment S2, where data were measured in the stream outlet.

We searched for the optimal combination of the parameter set, using the differential evolution

(DE) optimization method (Storn and Price, 1997, Price et al., 2006). The DE algorithm is a

heuristic optimization method with an evolution strategy for finding the global optimum value.

Requiring few prerequisites for its execution, the algorithm is applicable to non-differential,

nonlinear, and multimodal models. As a result, the DE algorithm has been applied to a variety

of fields including hydrological model calibration (Choi et al., 2017, Storn and Price, 1997, Price

et al., 2006, Ardia et al., 2016, Joseph and Guillaume, 2013, Zheng et al., 2015). We applied the

DE algorithm for model calibration using the “DEoptim” package (Ardia et al., 2016, Mullen

et al., 2011) on R version 3.5.1 (R Core Team, 2018). We used the Nash-Sutcliffe efficiency

coefficient (NSE) (Nash and Sutcliffe, 1970) between model outputs and field-measured data

as an objective function for the DE algorithm. To treat NSE values from stream discharge and

suspended sediments fairly, we evaluated the NSE values for each measurement and used the

average NSE value as the final objective function:

Fobj = 1− NSE(Qm)+NSE(SLm)

2 , (4.5)
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where Fobj is the objective function to evaluate the model performance. We ran the function

for 103 iterations, and ran for three different initial states to try to find the global minimum as

an optimum value.

4.2.4.3 Validation

Using adjusted parameters from calibration steps, model performance was tested for the

S3 site, which is located near the catchment outlet. Considering site-specific base flow from

groundwater and in-stream sediment processes for the S3 site, we adjusted the constants for the

in-stream processes (α and β). We utilized the NSE, the percent bias (PBIAS), and the coefficient

of determination (R2) as statistical criteria for model performance evaluation (Moriasi et al.,

2007, 2015). The function “gof” from the “hydroGOF” package (Mauricio Zambrano-Bigiarini,

2017) in R version 3.5.1 (R Core Team, 2018) was used to evaluate statistical criteria.

4.2.5 Identifying Annual Sediment Redistribution Patterns and As-

sessing Soil Erosion Risk

Projecting validated parameters on the DMMF model, we simulated and calculated the

annual sediment redistribution patterns of the catchment. Based on the simulated result, we

assessed the net soil erosion rate (SLnet: t/(hayear)) for each element of the catchment. SLnet

is the net soil erosion for each element, which is the amount of sediment input to each element

from upslope elements (SLin) subtracted from the amount of sediment output from the element

(SLout). Soil erosion risk was assessed by using SLnet of each element. We classified SLnet

into five categories, namely tolerable, low, moderate, high, and severe, as shown in Table 4.4

according to the soil erosion risk categories defined by OECD (OECD, 2001, 2008) which is one

of the internationally used criteria. Based on the net soil erosion rate of the entire catchment, we

Table 4.4. Soil erosion risk categories defined by OECD (OECD, 2001, 2008).

Erosion Class Tolerable Low Moderate High Severe
Soil erosion rate (t/(hayear)) <6 6–10.9 11–21.9 22–32.9 >33

assessed the soil erosion characteristics for each LULC class. For the assessment, we calculated

the mean SLnet for each LULC class.
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4.2.6 Evaluation of the Impact of Spatial Reconfiguration of Erosion

Hot Spots into Forest

We assessed the impact of the spatial reconfiguration of erosion hot spots into forest, based

on the annual sediment redistribution patterns of the catchment. Erosion hot spots represent

elements in which much annual net soil erosion (SLnet) occurs. To compare the impact of spatial

reconfiguration, we calculated the annual sediment yields being generated from the terrestrial

area and entering to the water bodies of the entire catchment (SYbase) as a base line condition.

SYbase is the total amount of sediment yields entering the water bodies of the entire catchment,

which is equal to the total amount of SLin flowing into water bodies. To increase the robustness

of our analysis, we only used the values between the 2.5th percentile and the 97.5th percentile

for all the elements in the catchment to exclude the impact of extreme values that can occur

from model outputs. The lower extreme values were set to the value of the 2.5th percentile

and the upper extreme values were set to the value of the 97.5th percentile. The impact of the

spatial reconfiguration of erosion hot spots into forest was evaluated by calculating the total

annual sediment yields entering the stream (SYtot), using the DMMF model as bare soil and

croplands (i.e., bean, cabbage, ginseng, orchard, potato, radish and rice field) being sequentially

changed into the forest. We selected forest, the original LULC type before anthropogenic land

cover changes, as the alternative LULC to mitigate erosion-prone areas. Similar to the methods

Chaplin-Kramer et al. (2015) and Chaplin-Kramer et al. (2016) which compute ecosystem

services by marginally changing forest into agricultural areas, we computed SYtot by gradually

converting 1% of the bare soil and croplands in the catchment into forest until all bare soil

and croplands elements are converted into forest. Based on this result, we presented the total

sediment yields (SYtot), reduction rate of the sediment yields entering the stream compared to

base line condition (SYbase), and sediment yield reduction efficiency per conversion area (t/m2).

4.3 Results

4.3.1 Model Performance

According to the calibration and validation results, the DMMF model showed competitive

performance, predicting stream discharge, but showed poorer performance in evaluating the

amount of suspended sediments at the outlet of each sub-catchment. We performed two-step

calibration by comparing the model outputs to the measured data collected from sub-catchment
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S1 and S2. The LULC and soil types of sub-catchment S1 are classified as forest and forest soil,

according to Tables 4.2 and 4.3. The calculated Sobol’ index for important parameters, both

for stream discharge (SIQ) and suspended sediments to the stream (SISL), are presented in

Table 4.5.

Table 4.5. List of important parameters from forested site with Sobol’ index greater than 0.05
for stream discharge (SIQ) and suspended sediment to the stream (SISL), and their optimized
values from the DE algorithm.

Parameters Soil Class / LULC SIQ SISL Optimized Values
θfc Forest soil 0.035 0.118 2.24×10−1

K Forest soil 0.202 0.082 6.17×101

DRc Forest soil 0 0.213 2.25×10−1

PI Forest 0.781 0.180 6.66×10−5

GC Forest 0 0.775 9.92×10−1

da Forest 0 0.144 7.77×10−3

According to the Sobol’ index, the amount of stream discharge was highly influenced by the

permanent interception of rainfall (PI) and lateral soil hydraulic conductivity (K), which regu-

late the amount of rainfall and flow rate of subsurface interflow of the sub-catchment, respectively.

Vegetation and surface cover structures (GC, PI, and da), detachability of clay particles (DRc),

soil water content at field capacity (θfc), and lateral soil hydraulic conductivity (K) exhibited a

relatively large impact on suspended sediments generated from the sub-catchment. This result

indicates that the suspended sediments generated from the sub-catchment are determined by

the amount of surface runoff and the erosivity of surface, because PI, K, and θfc determine

the amount of surface runoff by regulating the amount of rainfall and partitioning the rate of

surface and subsurface water. Parameters GC, da, and DRc determine the erosivity by surface

runoff.

We determined an optimized parameter set by adjusting selected important parameters from

sensitivity analysis using the DE algorithm (see Table 4.5). With the optimized parameter set,

the stream discharge and suspended sediment from the model outputs were compared with

those from field measurements (see Figure 4.6).

After calibrating the forest-related parameters, we calibrated the other parameters, based on

the measurement data collected from sub-catchment S2. We calculated the relative importance

of parameters for both the stream discharge (SIQ) and suspended sediments to the stream

(SISL), using the Sobol’ index, and presented them in Table 4.6.
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Table 4.6. List of important parameters (SI > 0.05) for stream discharge (SIQ) and suspended
sediment (SISL), and their optimized values from DE algorithm.

Parameters Soil Class / LULC SIQ SISL Optimized Values
θfc Moderate to steep dry field soil 0.115 0.112 3.18×10−1

K Moderate to steep dry field soil 0.223 0.020 6.06×10−1

K Flat dry field soil 0.062 0.001 1.59×10−1

DRc Moderate to steep dry field soil 0 0.217 1.39
DRz Moderate to steep dry field soil 0 0.119 9.59×10−1

PI Semi-natural 0.252 0.048 4.16×10−4

PI Rice paddy 0.101 0.000 2.91×10−1

PI Other dry crops 0.178 0.011 1.28×10−4

GC Semi-natural 0 0.080 3.60×10−2

da Semi-natural 0 0.158 1.74×10−1

da Bean 0 0.105 2.93×10−1

α - - - 1.75×10−2

β - - - 4.57×10−2

According to sensitivity analysis, model outputs were highly sensitive to soil hydraulic

characteristics of moderate to steep dry field soil and land cover structures of the semi-natural

field. In details, the stream discharge of the sub-catchment was highly sensitive to the permanent

interception of rainfall (PI) of the semi-natural, rice paddy, and other dry crops; the lateral

hydraulic conductivity (K) of the moderate to steep dry field and flat dry field soils; and the

soil water content at field capacity (θfc) of the moderate to steep dry field. This result indicates

that stream discharge is highly influenced by the amount of rainfall reaching the ground (PIs)

and the flow rate of subsurface interflow (Ks and θfc) of this region. The sediment yield to

the stream is sensitive to the soil detachability by runoff (DRc and DRz) of the moderate to

steep dry field soil, soil water content at field capacity (θfc) of the moderate to steep dry field

soil, flow depth (da) of the semi-natural field and bean field, and ground cover ratio (GC) of

the semi-natural field. This result emphasizes the role of the moderate to steep dry field soil,

which is the second largest soil type, following forest soil, and demonstrates the crucial role of

the semi-natural field on determining suspended sediment output from the model.

The performance statistics for the calibration and its time series plots of observed versus

simulated stream discharge and suspended sediment were presented in Figure 4.6. For the

calibration steps, the NSE values for stream discharge were 0.92 and 0.88 for sub-catchment S1

and S2, respectively. The R2 values for stream discharge were 0.93 and 0.88, respectively, and

the PBIAS values for stream discharge were −18.6 and 0.1, respectively. The NSE values for

suspended sediment were 0.99 and 0.43 for sub-catchments S1 and S2, respectively. The R2 values

for suspended sediment were 0.99 and 0.44, and the PBIAS values for suspended sediment were
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−6.8 and −22.1 for the sub-catchments, respectively. The site-specific constants reflecting the

baseflow from groundwater (α) and in-stream sediment deposition rate (β) for sub-catchment S2

are 1.75×10−2 m3/s and 4.57×10−2. In validation steps, the NSE values for stream discharge

and suspended sediment were 0.75 and 0.18, respectively, with the site-specific α and β being

1.711 m3/s and 6.76×10−2, respectively. The R2 for discharge and sediment were 0.83 and

0.39, respectively, and the PBIAS for discharge and sediment were 0 and −40.5, respectively.

According to the model performance evaluation criteria suggested by Moriasi et al. (2015), the

DMMF model showed good performance for discharge in both calibration and validation steps.

Though there is no clear model performance evaluation criteria suggested for daily time scale

sediment result for watershed model due to limited reported data (Moriasi et al., 2015), When we

apply the performance evaluation criteria for monthly time scale sediment result for watershed

scale model, the model might be considered to have a slightly poor performance for sediment

during the calibration and validation steps, as the NSE and R2 values were less than 0.45 and

0.40, respectively.

4.3.2 Sediment Redistribution Pattern of the Catchment

Simulating the model with optimized parameters, we calculated the annual net soil erosion

rate (SLnet) for each element and classified them into five classes–tolerate, low, moderate, high,

and severe–as in Figure 4.7.

According to Figure 4.7, elements with severe soil erosion (>33 t/(hayear)) were concen-

trated on the dry crop field with moderate to steep slope conditions on the interface with the

forest. The estimate of the mean annual net soil erosion rate by each LULC type (Table 4.7)

shows that bare soil and dry crop field suffered from severe soil erosion. On the other hand,

forest, rice paddy, orchard, and urban areas showed good sediment capturing capabilities.

4.3.3 Impacts of Conversion of Erosion Hot Spots into Forest on

Total Sediment Yield Entering the Stream

The LULC conversion of erosion hot spots into forest showed a dramatic impact in the

reduction of sediment yields entering the stream, as shown in Figure 4.8.

When each bare soil and crop field element in the catchment was converted into the forest

sequentially from the area with the highest soil erosion rate to the area with the lowest soil

erosion rate, the amount of total annual sediment yield of the catchment to the stream sharply

decreased having a shape similar to an inverted sigmoid function. Changing the 3% of erosion
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Fig. 4.7. (a) Annual net soil erosion (t/(hayear)) of the entire Haean catchment and (b) soil
erosion class according to the soil erosion risk categories from OECD (OECD, 2001, 2008).
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Table 4.7. Mean annual net soil erosion rate (t/(hayear)) and mean slope of each LULC type.

LULC Mean Annual Net Soil Erosion Rate (t/ha/year) Mean Slope (◦)
Bare soil 997.80 9.8
Bean 763.82 7.6

Ginseng 388.83 8.5
Potato 357.60 7.9
Radish 310.06 8.4

Other dry crops 294.23 8.4
Semi-natural 126.34 9.0

Shrub 105.54 11.1
Cabbage 79.30 7.6

Catchment average 52.68 16.0
Forest −75.25 22.0

Rice paddy −171.83 3.0
Orchard −227.14 8.1
Urban −284.71 6.0

hot spots that have suffered the most from severe soil erosion caused a reduction in sediment

yield entering the stream of ca. 10% from the baseline condition (SYbase), and a change in

10% of most severe hot spots is expected to reduce sediment yields by ca. 50%. Among the

elements SLnet, SLin, and SLout, the altered areas revealed that outputs from the element

(SLout) proved to be the most effective in reducing the total sediment yield into the stream. A

simulation of the sediment yields entering the stream showed that the reducing rate in sediment

yield for SLnet was less effective than those for SLout and SLin. Due to total annual sediment

yields sigmoidally decreases as bare soil and crop fields begin changed into forest, sediment yield

reduction efficiency per unit conversion area increased until ca. 10% of total crop land area

converted to forest and then gradually decreased. A simulation of the sediment yield reduction

efficiency showed that the element (SLout) was most efficient for all conversion intervals.

4.4 Discussion

Our findings emphasize the importance of landscape configuration on regulating ecosystem

services by showing the effectiveness of spatial reconfiguration of soil erosion hot spots into

forest on reducing the amount of sediment yield entering the stream. We simulated the annual

sediment redistribution pattern in the Haean catchment, utilizing the daily based Morgan–

Morgan–Finney (DMMF) soil erosion model. According to the result, the soil erosion rate

varied greatly depending on the topography and LULC type, and the area located on the steep

hill-slope, which is adjacent to the forest severely suffered from soil erosion. When reconfiguring
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Fig. 4.8. Total annual sediment yields entering the stream (upper panel) and sediment yield
reduction efficiency per unit conversion area (lower panel) through changing bare soil and
crop fields into forest sequentially from the area with the highest to the area with the lowest
amount of net soil erosion (SLnet), sediment inflow to the element (SLin), and sediment output
from the element (SLout).

the landscape patterns of croplands by sequentially altering erosion hot spots from the most

severe to the least severe areas into forest, we found dramatic effects in the reduction of sediment

yields entering the stream in this catchment. The reduction rate may reach ca. 50% when the

10% most severe erosion hot spots were altered, and we can expect a reduction rate of over 80%

when the ca. 20% most severe erosion hot spots are altered. In the following, we first discuss

model performance and limitation, and then potential management implications.

4.4.1 Model Performance

The assessment of soil erosion risk and measurement of the effectiveness of the spatial

reconfiguration of erosion hot spots in reducing sediment yields entering the stream were based

on the calibrated and validated simulations of the DMMF soil erosion model. According to the
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model performance criteria from Moriasi et al. (2015), the DMMF model showed satisfactory

performance for predicting stream discharge during the calibration and validation processes,

with mean NSE values of 0.90 and 0.75, mean R2 of 0.91 and 0.83, and maximum PBIAS of−18.6

and 0 during calibration and validation steps, respectively. The model showed comparatively

poor performance for predicting suspended sediment at the outlet of each sub-catchment, except

the small forested site (S1) where the stream does not exist. The mean NSE values were 0.66 and

0.18, mean R2 were 0.67 and 0.39, and maximum PBIAS were −22.1 and −40.5, respectively.

When we compared the model performance statistics of the DMMF model to those from previous

studies using soil and water analysis tool (SWAT), the model showed competitive performance in

predicting stream discharge but poorer performance in terms of predicting suspended sediments

in the stream (Maharjan et al., 2016, Jang et al., 2017). Maharjan et al. (2016) reported that

mean NSE values for stream discharge were 0.82 during calibration and 0.45 during validation.

In addition, they showed that mean NSE values for suspended sediment were 0.78 and 0.60

during calibration and validation, respectively. Jang et al. (2017) also reported mean NSE

values for stream discharge of 0.78 and 0.66 during calibration and validation, respectively. They

reported mean R2 for suspended sediment were 0.80 and 0.76 during calibration and validation,

respectively. In terms of soil erosion rate for each crop field, the DMMF model estimated that the

average annual soil loss of major dry crops ranged between 79.3 t/(hayear) and 763.8 t/(hayear)

for bean, radish, potato, and cabbage, and the average annual soil loss from whole dry crop

fields was 379.7 t/(hayear). Arnhold et al. (2014) reported that 30–54 t/(hayear) of soil loss

occurred in the dry crop fields, including bean, radish, potato, and cabbage, from the plot-level

field measurement. Furthermore, Maharjan et al. (2016) estimated that 35.5–53.0 t/(hayear)

of soil loss occurred in the dry crop fields from the SWAT model. When we compared the

results from the DMMF model with those from other studies, the amount of soil loss from

this study is far greater. The reasons that the DMMF model showed poor performance for

predicting suspended sediment in the stream can be analyzed from two perspectives. The first

reason involves the discrepancy of data types between the DMMF model and observed data.

The observed data were stream discharge and suspended sediment at the outlet of each sub-

catchment. On the other hand, the DMMF model can estimate the total sediment yields entering

the stream that belongs to each sub-catchment. The DMMF model is efficient for estimating

sheet and rill erosion, but it has limitations in estimating in-stream sediment processes such

as stream bed deposition, channel erosion, and sediment transport in the stream. Considering

the limitations of the model, we use site-specific coefficients, which assume that suspended

sediments measured at the outlet are proportional to the sediment yields inflowing into the
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stream. However, incorporating the quantity and the velocity of stream water discharge, sediment

flux, and physical characteristics of channel structures such as gradient, width, depth, and length,

into the in-stream sediment process, is complicated (Tucker and Whipple, 2002, Neitsch et al.,

2011). The reasons above may lead to a high sediment deposition rate in the stream (i.e., low

measured sediment ratio (β)), which in turn, causes a high soil erosion rate in the terrestrial

area. Because the study sites are affected by monsoon climate, such that its rainfall pattern is

not uniform but rather with a lot of extremes, a large amount of sediment is deposited during

low rainfall events, and the deposited sediments are washed out by a huge amount of fast stream

discharge accompanying heavy rainfall. Temporal lags between the rainfall event and stream

discharge are negligible for the Haean catchment, but for suspended sediments, the lags are

significant and highly depend on the stream length because of the difference in travel velocities

between water and soil particles (Lee, 2008, Kim et al., 2015, Gellis, 2013, Vercruysse et al.,

2017). Therefore, the model performance for predicting stream discharge may be better than

that for predicting suspended sediments. The stream widens and deepens as it descends to the

lower area, according to Lee (2009), and the length of the stream also increases as the size of

sub-catchment grows. The uncertainty caused by in-stream processes increases as the size of the

sub-catchment grows, which reduces the model performance in predicting suspended sediments

in this study. SWAT and USLE-based models are usually calibrated and validated at the fixed

spatial area with a different temporal period. Therefore, in-stream sediment processes can be

included in the parameters, which may lead to better model performance. However, the DMMF

model is a spatially distributed semi-processed model and used the same temporal period with

a different spatial area for calibration and validation in this research, so that the in-stream

processes cannot be included in the model.

Secondly, many sediment reduction facilities, such as dams for freshwater, debris barrier and

culvert systems around crop fields, and road infrastructures, which can affect sediment transport

processes, have been installed in the Haean catchment (Shope et al., 2014, Jeon and Kang,

2010). The dam and debris barriers create reservoirs that impede the stream flow and filter

out sediments in the facilities. This disrupts the correct evaluation of the model performance

for this catchment. Shope et al. (2014) showed complex stream networks, including the culvert

systems around crop fields and the road infrastructure. The culvert systems extend the travel

time of suspended sediments and reduce the runoff and transport velocities of sediments by

altering the flow direction abruptly. Increased travel time and decreased transport velocity tend

to increase the deposition rate of sediments compared to the condition without the culvert

system. The deposited sediments in the culvert flow into the stream by runoff, with sufficient
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power to wash out. The culvert system is also responsible for the temporal lag between the

rainfall event and the presence of suspended sediments in the catchment. Sediment reduction

facilities trap a huge amount of sediments, which make the measured sediment ratio (β) in this

study have very low values. Because of the small β, the stream bed deposition rate became too

large, and consequently, the overall erosion rate from terrestrial area increased. To cope with

this problem, the in-stream processes will need to be considered more precisely through model

improvements.

4.4.2 Assessment of Soil Erosion Risk and the Effectiveness of Spa-

tial Reconfiguration of Erosion Hot Spots on Reducing Sedi-

ment Yield Entering the Stream

We estimated the annual net soil erosion rate of the entire catchment and assessed the

soil erosion risk class according to the OECD criteria. According to this study, soil erosion is

concentrated on the hill-slope of the catchment, and the problem is more significant for the

bare soil and dry crop fields, such as bean, radish, and potato, in this area. In addition, forest

in the valley showed a considerable amount of soil loss, also suffering from erosion due to the

concentrated surface runoff and steep slope. Compared with other studies, the soil erosion risk

pattern and the average annual soil loss from the DMMF model is qualitatively consistent with

the soil erosion risk map from Lee et al. (2014), with average climate conditions for the 2010s

using the USLE-based SATEEC (Lim et al., 2005) model. According to this study, urban area,

orchard, and rice field showed better performance for sediment capturing capabilities than forest.

However, the urban area and rice field are located in the lower and flatter area than forest, so

that the sediment inputs from the upslope area tend to be deposited in this area. Furthermore,

because the urban area is usually paved with impervious covers, such as concrete and asphalt,

and the rice field is filled with water, which acts as a pervious cover that prevents surface

erosion, these areas have little soil loss but receive huge input from the upslope area. Though

the forest is in a region where the slope is very steep, the average amount of soil loss is smaller

compared with other land types, and it also shows excellent sediment capturing capability, in

general. Like the other studies, we can conclude that the main cause of severe erosion in the

catchment is cropland extension after deforestation at the hill-slope area of the catchment (Lee,

2009, Maharjan et al., 2016, Arnhold et al., 2013, 2014, Jang et al., 2017, Lee et al., 2014).

We also assessed the effect of spatial reconfiguration of LULCs on reducing sediment yields

entering the stream. In this study, the spatial reconfiguration of erosion hot spots into forest
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showed excellent reduction efficiency in sediment yields entering the stream. We identified that

the sediment yields entering the stream were reduced sharply, as crop lands were sequentially

changed into forest from the area with the most severe soil loss to the area with the least soil

loss. An sigmoidal sediment reduction rate from altering LULCs to forest indicates that forest

is not only effective in preventing surface erosion but also effective in capturing sediment input

from the upslope area. In addition, the result suggested that altering LULCs based on the

amount of sediment output from the element is the most effective way of reducing sediment

yields entering the stream. This result is consistent with previous studies that emphasize the

effectiveness of vegetative filter strips located at sediment sources such as crop fields (Maharjan

et al., 2016, Ali and Reineking, 2016, Jang et al., 2017, Dillaha et al., 1989, Delgado et al.,

1995, Muñoz-Carpena et al., 1999). The result can also be generalized to consider the effect

of riparian vegetation buffer strip on reducing sediment yields entering the stream, located

at the interface between crop fields or natural sediment sources and the stream channel (Lee

et al., 2003, Cooper et al., 1987, Osborne and Kovacic, 1993). This study also demonstrated

that the sediment yield reduction efficiency initially increased as the first few bare soil area

and crop lands with the most severe soil loss were converted into forest. The sediment yield

reduction efficiency were maximized when ca. 10% of the area converted, and then the efficiency

decreased gradually. These patterns can be explained by two aspects of the forest’s sediment

yield reduction capability; protecting surface from soil erosion, and capturing sediment inputs.

The areas with the most severe soil loss are located at the steep hillslope where surface runoff

is concentrated. These areas have a large transport capacity of the runoff, beyond the sediment

capturing capability of forest because transport capacity is greater than the available sediment

for transport (Choi et al., 2017). In these areas, conversion of crop lands into forest can reduce

soil loss from the surface but cannot capture sediment inputs from upslope which is larger than

surface soil loss. As slope becomes milder and the amount of surface runoff decreases due to

gradual conversion of crop lands into forest, transport capacity gradually decreases. Decreased

transport capacity caused by decreased slope gradient and surface runoff lets forest capture

more sediments, maintaining the surface protecting capability from soil loss. Therefore, the

sediment yield reduction capabilities of forest become small and the sediment yield reduction

efficiency by changing crop lands into forest decreases gradually. According to these results, one

can reduce sediment yields entering stream efficiently by identifying an optimal percentage of

crop land conversion into forest which brings out the best efficiency of sediment yield reduction

per unit conversion area.
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4.5 Conclusions

In this study, we identified the soil erosion risk of Haean catchment spatially explicitly by

projecting sediment redistribution patterns using the DMMF model. In addition, we measured

the sediment yield reduction efficiency entering the stream by sequentially altering erosion hot

spots into forest from that which has the highest soil loss to that which has the lowest soil loss.

The DMMF model showed competitive performance estimating stream discharge but exhibited

lower performance estimating suspended sediments at each sub-catchment outlet. When we

applied the DMMF model to the Haean catchment, the bare soil surface and dry crop fields

located on the steep hill-slope of the catchment suffered mostly from severe soil erosion. On the

other hand, forest, rice paddy, orchard, and urban areas suffer less from soil erosion. By changing

the erosion hot spots from cropland to forest, the overall amount of sediments exporting to the

stream of the catchment was effectively reduced. The sediment yield reduction efficiency was

maximized when ca. 10% of crop lands were converted to forest. This study implies that one

can achieve the goal of reducing sediment yields entering the stream by identifying the location

of erosion hot spots and managing the area intensively. Although previous studies showed good

mitigation effects of BMPs that require compliance of stakeholders, this may not be easy and

takes much time for stakeholders to follow the BMPs, because the degree of acceptance of the

policy depends on the situation and tendency of each stakeholder (Jang et al., 2017). On the

other hand, the spatial reconfiguration approach proposed in this study can reduce the number

of stakeholders relevant to soil erosion mitigation measures. However, this approach reduces crop

yields because crop lands are converted to non-crop lands to reduce sediment yields from the

catchment. In addition, the sediment yield reduction efficiency decreases after a certain point

of spatial reconfiguration. Therefore, the two approaches—BMP measures such as cultivating

cover crops, mulching surface with straw, and managing field margin naturally, and conversion

of crop lands with the more severe soil loss—are complementary measures to reduce sediment

yields into the stream.

Author contributions

Conceptualization, K.C. and B.R.; Data curation, K.C. and G.R.M.; Formal analysis, K.C.;

Investigation, K.C.; Methodology, K.C.; Resources, G.R.M.; Software, K.C.; Supervision, B.R.;



CHAPTER 4. EFFECT OF SPATIAL RECONFIGURATION ON REDUCING STREAM SEDIMENT
LOAD 119

Validation, K.C.; Visualization, K.C.; Writing original draft, K.C.; Writing review & editing,

G.R.M. and B.R.

Funding

This study is part of the International Research Training Group “Complex Terrain and Eco-

logical Heterogeneity” (TERRECO) funded by the German Research Foundation (DFG) with

the grant number [GRK 1565/1]. This study was also supported by the National Research

Foundation of Korea (NRF) with the grant number [NRF-2017R1A2B4010460].

Acknowledgments

This paper is dedicated to the memory of our wonderful colleague, Sebastian Arnhold, who

passed away last year. This publication was funded by the German Research Foundation (DFG),

the National Research Foundation of Korea (NRF). This publication was also funded by the

German Research Foundation (DFG) and the University of Bayreuth in the funding programme

Open Access Publishing. We would like to thank Editage (www.editage.co.kr) for English

language editing.

Conflicts of interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of

the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,

and in the decision to publish the results.

Appendix 4.A Detailed Structure of the DMMF Soil Ero-

sion Model

Morgan–Morgan–Finney (MMF) model (Morgan et al., 1984) is a conceptual soil erosion

model, which estimates the annual soil erosion rate from an area by comparing the amount soil

particles detached from the surface (SS) and transport capacity of surface runoff (TC) (Morgan

et al., 1984, Morgan, 2001, Morgan and Duzant, 2008). The first version of MMF model (Morgan

et al., 1984) estimated soil erosion rate of an area by comparing the amount of soil particles

detached by raindrop impact (F ) and transport capacity of surface runoff (TC). The second

www.editage.co.kr
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version of model, the revised Morgan–Morgan–Finney (RMMF) model (Morgan, 2001) started

to consider the amount of soil particles generated by surface runoff (H). In the third version, the

modified Morgan–Morgan–Finney (MMMF) model (Morgan and Duzant, 2008), the interconnec-

tivity of surface runoff, various sub-processes such as the subsurface interflow and gravitational

deposition processes, and parameters such as the physical structure of vegetation and surface

ground conditions were introduced to calculate transport capacity of surface runoff (TC) and

the amount of soil particles available for transport (G) more physically rigorously (Lilhare et al.,

2014). The daily based Morgan–Morgan–Finney (DMMF) soil erosion model (Choi et al., 2017)

is also estimates daily soil loss from an element by comparing transport capacity of surface runoff

(TC) and the available sediment for transport (G). The DMMF model is mainly comprised of

hydrological and sediment phases. The hydrological phase determines the amount of surface

runoff and subsurface interflow, and the sediment phase determines the amount of sediment

budgets of the element.

4.A.1 Hydrological Phase

The effective rainfall (Reff ; mm) which is the volume of rainfall reaching the unit surface

area of an element is the main driver of hydrological phase. Following the corrected version of

the effective rainfall (Reff ) from Choi et al. (2016), Reff is calculated as,

Reff = R× (1−PI)× cos(S) , (A1)

where PI is the proportion of the permanent interception area and S is the slope of an element.

Similar to MMF model, surface runoff can be generated when the total input of water to the

element exceeds the surface water infiltration capacity (SWc; mm), which is the soil moisture

storage capacity considering the proportion of the impervious area (IMP ). SWc is defined as,

SWc = (1− IMP )× (SWsat−SWinit−
ΣIFin

A
) , (A2)

where SWsat (mm) is the volume of water per unit area when soil is fully saturated, and SWinit

(mm) is the volume of initial water per unit area that is already existed in the soil. ΣIFin (L)

is the volume of subsurface water inputs from upslope and A (m2) is the area of an element.

The amount of the surface runoff (Q; mm) is calculated as,

Q= Reff +
ΣQin

A
−SWc , (A3)
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where Qin (L is the volume of surface runoff inflow from upslope areas. The amount of water in

the soil also flows out from the element as a subsurface interflow (IFout; L) when the voludme

of soil water budget per unit area (SW ; mm) of the element exceeds the volume of soil water

at field capacity per unit area (SWfc; mm). The soil water budget (SW ) is estimated as,

SW = (SWinit +
ΣIFin

A
)+ (Reff +

ΣQin

A
−Q)−ET , (A4)

where ET (mm) is the volume of water evapotranspirates per unit area from the element. Then

the volume of subsurface water flowing out from the element (IFout) can be described as,

IFout =K× sin(S)× (SW −SWfc)×w , (A5)

where K (m/d) is the saturated soil lateral hydraulic conductivity and w (m) is the width of

the element. A part of soil water remains with remaining water content (θr; vol/vol) which can

be described as,

θr =
(SW − IFout/A)

1000×SD , (A6)

where SD is the soil depth of the element, and 1000 is the constant to convert meters to

millimeters. The θr can be changed into θinit for the next day.

4.A.2 Sediment Phase

Sediment phase determines the total mass of soil particles which is taken out of the element

through three steps: delivery of detached soil particles into the surface runoff, gravitational

deposition, and estimation of hhe sediment loss from the element (SL) by comparing transport

capacity of the runoff (TC; kg/m2) and sediment available for tranport (G; kg/m2). In the

model, soil particles are detached from the surface by raindrop impact and surface runoff. The

mass of soil particles detached by raindrops per unit area (F ; kg/m2) is described as,

F = 0.001×DK×P × (1−EPA)×KE , (A7)

where DK (g/J) is the detachability of soil particles by raindrop impact, P (%) is the proportion

of each soil particle size class (i.e., clay, silt, and sand), KE (J/m2) is the kinetic energy of the

effective rainfall considering direct throughfall and leaf drainage from the plant, and 0.001 is
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the unit conversion factor from g to kg. Also, EPA is the erosion protected area:

EPA= IMP +(1− IMP )×GC , (A8)

where GC is the proportion of ground cover and IMP is the proportion of the impervious area

(IMP ) of the element. The mass of detached soil particles by the surface runoff (H; kg/m2) is

described as,

H = 0.001×DR×P ×Q1.5× (1−EPA)× (sin(S))0.3 , (A9)

where DR (g/mm) is the detachability of soil particles by runoff per unit volume of surface

runoff and Q is the volume of runoff per unit area, S is the slope of the element, and 0.001 is

the unit conversion factor from g to kg. Sediment inputs from upslope elements (ΣSLin) also

flows into surface runoff. The mass of delivered sediments to the surface runoff per unit area

(SS; kg/m2) is,

SS = F +H+
ΣSLin

A
. (A10)

A part of sediments delivered to the surface runoff (SS) in the runoff settle down to the

ground by gravity. The gravitational deposition rate of the suspended sediments (SS) in runoff

(DEP ) is,

DEP = 0.441×Nf , (A11)

where Nf is the particle fall number which is the probabilistic ratio of falling particles (Tollner

et al., 1976), The Nf can be estimated as,

Nf =
l

v
× vs

d
, (A12)

where v (m/s) is the velocity of the surface runoff, vs is the settling velocity of each particle

size class, and d (m) is the depth of the surface runoff.

The remaining suspended sediments become available for transport per unit volume of surface

runoff per unit area (G; kg/m2) and be estimated as,

G= SS× (1−DEP ) . (A13)

The part of the availabe sediments for transport (G) can flow out from the element according

to the transport capacity of the runoff (TC; kg/m2) of an element which is determined by the

volume of runoff per unit area of an element (Q), the slope angle (S) and the surface conditions



CHAPTER 4. EFFECT OF SPATIAL RECONFIGURATION ON REDUCING STREAM SEDIMENT
LOAD 123

(Morgan and Duzant, 2008). Due to the physical condition of surface affect runoff velocity, the

tranport capacity of runoff can be described using the ratio between actual runoff velocity (v)

and the reference velocity of the element (vr; m/s) (Choi et al., 2016).

TC = 0.001×
(
v

vr

)
×Q2× sin(S) . (A14)

The reference velocity (vr) is,

vr =
1
nr
×d2/3

r ×
√

tan(S) , (A15)

with 0.015 for Manning’s coefficient (nr) and 0.005 for runoff depth (dr) representing for a

standard surface condition. The transport capacity of the runoff (TC) and the available sediment

for transport (G) determines the amount of sediment loss from the element (SL) (Morgan and

Duzant, 2008, Meyer and Wischmeier, 1969). When TC is greater than G, the surface runoff

washes out all the sediments available for transport, otherwise, the amount of sediment (SL)

which is equal to TC can be transported from the element.
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Abstract

Nitrogen (N) and phosphorus (P) in topsoils are critical for plant nutrition. Relatively little is known

about the spatial patterns of N and P in the organic layer of mountainous landscapes. Therefore, the

spatial distributions of N and P in both the organic layer and the A horizon were analyzed using a

light detection and ranging (LiDAR) digital elevation model and vegetation metrics. The objective

of the study was to analyze the effect of vegetation and topography on the spatial patterns of N
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and P in a small watershed covered by forest in South Korea. Soil samples were collected using the

conditioned Latin hypercube method. LiDAR vegetation metrics, the normalized difference vegetation

index (NDVI), and terrain parameters were derived as predictors. Spatial explicit predictions of N/P

ratios were obtained using a random forest with uncertainty analysis. We tested different strategies of

model validation (repeated 2-fold to 20-fold and leave-one-out cross validation).

Repeated 10-fold cross validation was selected for model validation due to the comparatively high

accuracy and low variance of prediction. Surface curvature was the best predictor of P contents in

the organic layer and in the A horizon, while LiDAR vegetation metrics and NDVI were important

predictors of N in the organic layer. N/P ratios increased with surface curvature and were higher on

the convex upper slope than on the concave lower slope. This was due to P enrichment of the soil

on the lower slope and a more even spatial distribution of N. Our digital soil maps showed that the

topsoils on the upper slopes contained relatively little P. These findings are critical for understanding

N and P dynamics in mountainous ecosystems.

5.1 Introduction

Nitrogen (N) and phosphorus (P) are the most important nutrients for primary productivity

in terrestrial ecosystems (Vitousek et al., 2002, 2010). Soil nutrient content varies during long-

term soil development, such that N increases while P declines during the course of pedogenesis.

This is because N enters the ecosystem via N-fixing microorganisms, whereas P is derived from

the weathering of minerals. As a result, primary productivity is initially N-limited in lightly

weathered soils but becomes increasingly P-limited in highly weathered soils over millions of

years (Laliberté et al., 2013).

P limitation is enhanced by atmospheric N deposition (Vitousek et al., 2010, Braun et al.,

2010). In East Asia, where the population and economy are growing rapidly, atmospheric N

deposition is currently very high (Manning, 2012). In South Korea, atmospheric N inputs have

rapidly increased due to large industrial operations and agricultural intensification (Jang et al.,

2011, Kim et al., 2014, 2011). The annual average wet input of N ranged from 12.9 to 24.9

kgha−1 year−1 from 2005 to 2010 (Jang et al., 2011), and is markedly higher than that during

pre-industrial times. This might have effects on the productivity, biodiversity, and community

composition of plants (Turner, 2008).

An understanding of nutrient contents in the organic layer is critical for mountainous ecosys-

tem management. Organic layers are made up of freshly fallen organic matter, including whole

leaves, twigs, and fruits. Following mineralization of organic matter, the organic layer slowly
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supplies nutrients, which are absorbed by plant roots (Osman, 2013). Therefore, nutrients that

are returned to soil by litterfall are important for plant nutrition (Huang and Spohn, 2015).

In particular, the N/P ratio in topsoil is used as an indicator of potential growth limitation

(Cleveland and Liptzin, 2007), and the spatial patterns of nutrients in the organic layer and in

the A horizon can provide insight into soil-vegetation relationships.

Many studies have assessed spatial patterns of soil N (Peng et al., 2013, Liu et al., 2013,

Kunkel et al., 2011) and P (Kim et al., 2014, Roger et al., 2014, McKenzie and Ryan, 1999).

Previous studies on mountain ecosystems have found environmental correlations between the

N contents in the organic layer and topographic parameters in a temperate forested watershed

(Johnson et al., 2000) and in boreal forests (Seibert et al., 2007). Wilcke et al. (2008) reported

an elevation gradient of decreasing N and P content in organic layers, and Soethe et al. (2008)

found that the N stocks of the organic layer differ significantly between different elevations in

tropical mountain forests. However, our understanding of quantitative relationships between the

content of nutrients (especially P) in the organic layer, topography, and vegetation is limited.

In this regard, recent advances in digital soil mapping (DSM) have allowed us to improve our

knowledge on spatial patterns of N and P and their environmental controls.

DSM often uses topographical predictors derived from digital elevation models (DEM), such

as elevation, slope angle, curvature, and wetness index (McBratney et al., 2003, Grunwald, 2005).

According to Ballabio (2009), maps of soil properties can be produced with good accuracy using

only terrain parameters as predictors in mountainous areas. In addition, vegetation data might

improve DSM results, especially for the organic layer since it strongly depends on the vegetation

(Dan Binkley, 2012). Various vegetation parameters derived from satellite images have helped

to explain the spatial variability of soil nutrients when used as DSM predictors (Grunwald et al.,

2015, Mulder et al., 2011). However, to our knowledge, no attempt has been made to use Light

detection and ranging (LiDAR) derived vegetation metrics for the spatial predictions of soil

properties.

LiDAR-derived vegetation metrics could extend our understanding of spatial soil data by

providing insight into the relationship between soils and vegetation as they are related to the

vegetation’s vertical variability, which reflects forest structure metrics (Jones and Vaughan,

2010). Canopy cover percentage and maximum height can indicate the above ground biomass

and forest productivity (Zellweger et al., 2015). LiDAR predictors may also act as ecological

indicators, such as light condition on the forest floor (Zellweger et al., 2015). LiDAR intensity

varies with land cover and forest types (Ørka et al., 2009). Additionally, LiDAR predictors are

high-resolution data, which provide more detailed spatial information than can be obtained
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from other types of remote sensing data (e.g., Aster [15 m] or Landsat [30 m] images). The

normalized difference vegetation index (NDVI) and LiDAR data are expected to be important

for N predictions related to forest biomass, but most probably not for P since it is assumed to

mainly originate from bedrock.

LiDAR DEM could also be useful for predicting the spatial distributions of soil nutrients,

especially P. P in soils tends to be fixed into stable forms as iron, aluminium, and calcium

combinations (Walker and Syers, 1976). Most P in soils is lost by soil erosion and is moved along

surface configuration (Smeck, 1985). The LiDAR DEM can provide high resolution information

on topography which might benefit the investigation of spatial P patterns.

To better understand the spatial patterns of N and P in the organic layer and mineral

topsoil, the aim of this study was to use high-resolution LiDAR data and the derived DEM

and vegetation metrics to predict topsoil N and P content by a DSM regression approach. The

specific objectives of our research were: (1) to test the importance of LiDAR-derived vegetation

and topographical parameters to understand the spatial patterns of N and P; (2) to identify

subareas with critical P contents; and (3) to test different validation strategies for N and P.

5.2 Materials and methods

5.2.1 Research area

The study area has a size of 9.84 km2 and is located in the downstream area of the Soyang

lake watershed, Gangwon province, South Korea (Fig 5.1). The mean annual air temperature

Fig. 5.1. Research area. (A) The Soyang watershed within South Korea. (B) The research
area within the Soyang watershed. (C) The research area with the sampling points. (D) The
tree species map (fgis.forest.go.kr).
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of the study area is 11.1 °C and it receives a mean annual rainfall of 1,347 mm with about 70%

of the annual rain (824.4 mm) falling in the summer monsoon season (June, July, and August)

(Korea meteorological administration, 2015). The area’s bedrock is part of the Gyeonggi gneiss

complex, which consists of granitic gneiss and banded gneiss (Korea Institute of Geology, Mining,

and Material, 2001) formed in the Paleoproterozoic and belonging to the oldest basement rocks

in the Korean Peninsula (Chough, 2013). The elevation ranges between 320 and 868 m above

sea level and the area consists of various steep slopes (over 45°) caused by a tectonic uplift

that occurred during the Quaternary Period (Lee, 2004). The area is a headwater catchment

with narrow depositional areas and valleys, and plays an important role in the biogeochemical

cycle of the downstream hydrological system as a key source of nutrients (Wohl, 2000). Its

soils are mainly composed of fine gravelly sandy loam soils, fine sandy loam, and gravelly loam

soils (National Academy of Agricultural Science). The area is part of a national forest and

the main tree species are Mongolian oak (Quercus mongolica; 40-50 years) and Korean pine

(Pinus koraiensis; 30-35 years), locally vegetated with Japanese red pine (Pinus densiflora) and

Japanese larch (Larix kaempferi) (Fig 5.1).

5.2.2 Soil sampling and chemical analyses

Soil samples were collected from the organic layer and the A horizon at 91 sampling sites

in 2014. Spatial position information of sampling points was recorded with a Qmini H3 global

navigation satellite system (GNSS) GPS (accuracy within 5 m). Field studies were carried out

under research permission from the Korea Forest Service of Chuncheon. We confirm that the field

studies did not involve endangered or protected species. Conditioned Latin Hypercube Sampling

(cLHS) was applied to optimize the density functions of the n-dimensional covariate space for

the regression models (Minasny and McBratney, 2006). This is a stratified random sampling

approach that divides the empirical density functions of the predictor space into quantiles based

on the number of samples. In order to obtain a Latin hypercube of exactly one sample per

quantile for each of the predictors, an optimization approach is used. In the R package “clhs”

(Roudier et al., 2012), this is achieved by simulated annealing.

The organic layer had an average depth of 5 cm and was sampled using a metal frame of 0.3

× 0.3 m. The A horizon of the mineral soil was sampled using a shovel according to the depth

of the A horizon, which differed between 10 and 30 cm. Mineral soil samples were air-dried and

sieved (< 2 mm). The organic layer samples were oven-dried. Total P was extracted with HNO3

and HF and measured according to DIN EN ISO 11885 / 22036 (Deutsche Einheitsverfahren



CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 137

zu Wasser, 2002) by ICP-OES (Perkin Elmer, 2100 ZL, USA). After grinding to a fine powder,

total N was measured by an elemental analyzer NA 1108 (CE Instruments, Milano, Italy). N/P

ratios were calculated based on mass.

5.2.3 Environmental predictors

LiDAR is a remote sensing technology, which provides structural information on the illu-

minated surface, including the 3D terrain, vegetation canopy information, and object heights

(Franklin, 2010). Point data, including x, y, and z coordinates, can be converted to a digital ter-

rain model and a digital surface model (Hyyppä et al., 2008). The laser emits short pulses of light

and the sensor records several returns from leaves, branches, and the underlying ground surface

(Jones and Vaughan, 2010). Vegetation heights can be derived from the difference between the

ground and the non-ground returns (Jones and Vaughan, 2010). LiDAR also generates intensity

data, reflecting characteristics of objects, which can provide useful information on forest types

and tree species (Ørka et al., 2009). Detailed overviews are provided by Asner et al. (2015) and

Hyyppä et al. (2015).

We used LiDAR point data which has a vertical accuracy of below 10 cm and an average of

4.08 points/m2, surveyed by the National Geographic Information Institute (NGII) in South

Korea (National Geographic Information Institute, 2015). The point data were pre-processed

to identify ground returns, classify all returns, and calculate the normalized vegetation heights.

Furthermore, we calculated a set of forest structural predictors using the LAStools software

which provides a wide variety of methods to process LiDAR data (Isenburg, 2014) (Table 5.1).

First, the ground and non-ground points were classified using the lasground module of LAStools.

Table 5.1. Environmental predictors for digital soil mapping.

Predictor Method Reference

1 Elevation (ELEV) Las2dem LAStools module Isenburg (2014)
2 Slope degree (SLO) Slope, aspect, curvature SAGA module Zevenbergen and Thorne (1987)
3 Catchment area (CA) Catchment area (Parallel) SAGA module (Multiple flow direction) Freeman (1991)
4 SAGA topographical wetness index (STWI) SAGA wetness index SAGA module Böhner et al. (2002)
5 Surface curvature (CUR19) CURV3 program Park et al. (2001)
6 Normalized difference vegetation index (NDVI) (NIR-Red) / (NIR+Red) Tucker and Sellers (1986)
7 Maximum height (Hmax) Lascanopy LAStools module Isenburg (2014)
8 Canopy cover percentage (Hccp) Lascanopy LAStools module Isenburg (2014)
9 Standard deviation of heights (Hstd) Lascanopy LAStools module Isenburg (2014)
10 Forest canopy and height (Hch) Canopy cover percentage (Hccp) × maximum height (Hmax) -
11 First return intensity average (Hfiravg) Lasgrid LAStools module Isenburg (2014)

Note: NIR, near-infrared.

Then, the ground points were used to produce a digital elevation model with the las2dem module,

and heights of non-ground points were calculated using the lasheight module. Finally, LiDAR

vegetation metrics were derived using the lascanopy module. The maximum height (Hmax) was
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computed from the maximum point height within a grid cell. Variations of all vegetation point

heights within a grid cell were converted to the standard deviation of heights (Hstd), which

indicates the structural diversity of the forest. The canopy cover (Hccp) was calculated as the

number of LiDAR first returns greater than the cover cutoff (1.37 m by default) divided by

the total number of first returns (Isenburg, 2014). NDVI was derived from a 4-m Kompsat-2

image obtained on 11th October 2014 (Jensen, 2015, Thenkabail et al., 2011). We selected the

clear-sky image taken at the similar time as the field survey.

Most topographical predictors were calculated with the terrain analysis modules of the open

source software SAGA based on the LiDAR DEM (Conrad et al., 2015). In addition, surface

curvature, which reflects the degree of bending of the three-dimensional surface morphology, was

calculated with the CURV3 program (Park et al., 2001). To consider the variability of surface

configuration, surface curvature values were calculated with different search window sizes of 3 ×

3 to 35 × 35 cells. The one with the highest Pearson’s correlation coefficient with the response

variables N and P was finally selected as a predictor: 19 × 19 cells (CUR19). All predictors

were converted to 10-m cell size via the nearest neighbor resampling method.

5.2.4 Random forest

Random forest (RF) is an ensemble learning method that operates by building a set of

regression trees and averaging the results (Breiman, 2001). Each tree is built using bootstrap

samples of the data and a subset of predictors. Providing the number of trees is large, the overall

accuracy (out-of-bag error) of the RF converges (Breiman, 2001). Accordingly, the number of

trees was set to 1000. The size of the predictor subset (mtry) was tuned by the R package “caret”

(Kuhn and Johnson, 2013). The R package “randomForest” (Breiman, 2001) was employed as

a dependency.

RF is able to model complex nonlinear relationships between soil properties and environ-

mental predictors. It is easier to apply than other supervised learning methods (e.g., neural

networks and support vector regression) and does not require much tuning (Kuhn and Johnson,

2013, Strobl et al., 2009, Kampichler et al., 2010). It also has a better interpretability due to

the provision of a predictor importance measure. For this measure, the predictor values are

permuted. The importance is then determined by the difference in mean square error before

and after permutation (Strobl et al., 2009). Overall, RF has demonstrated good performance

in DSM applications (Kim et al., 2014, Grimm et al., 2008, Wiesmeier et al., 2011, Tesfa et al.,

2009, Ließ et al., 2011).
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Predictor selection is reported to influence model performance (Brungard et al., 2015, Miller

et al., 2015, Poggio et al., 2013). Recursive feature elimination (RFE), a backward predictor

selection method, begins with all predictors and iteratively eliminates the least important

predictors one by one based on an initial measure of RF predictor importance until the best

predictor remains (Kuhn and Johnson, 2013). At the end, the optimal number of predictors and

the final list of selected predictors are returned. The package “caret” provides the functions for

RFE (Kuhn and Johnson, 2013).

To assess model performance, R2 and root mean square error (RMSE) were calculated. For

model validation, we used k-fold cross-validation (CV) where the dataset is randomly partitioned

into k subsets; one subset is left out for model validation while the remaining subsets are used

for model training. The process is repeated k times (once for each fold) and the k estimates of

performance are summarized. In k-fold CV, the choice of k determines the size of the test and

training dataset. For example, in the case of 10-fold CV, 10% of the data are used for validation

and the remaining 90% are used for calibration. The choice of k is usually 5 or 10; however

there is no formal rule (Kuhn and Johnson, 2013). Although the subsets are generated randomly,

the subdivision still affects model validation results. This can be acknowledged by repetitions

of the k-fold CV. Still, the number of repetitions (n) might also affect the estimated model

performance; for example, more repetitions lead to better results (Molinaro et al., 2005). We

explored 2-, 5-, 10-, 20-fold, and leave-one-out (LOO) CV in n repetitions to account for a total

of 100 validation measures: n×k=100. Ultimately, 100 Rsquares and RMSEs were returned for

each soil property. Finally, the cell-wise standard deviation of the corresponding 100 predictions

provides an estimate of spatial uncertainty.

5.3 Results

5.3.1 Descriptive statistics of soil nutrients

Summary statistics for the N and P data are shown in Table 5.2. The mean N value of the

organic layer (No)was higher than that of the A horizon (Na). No had the lowest coefficient

of variation (CoV), while total P in the organic layer (Po) showed a relatively higher variance

based on the standard deviation and CoV. This indicates that the variability in the N/P ratios

in the organic layer (No/Po) was dependent on Po content, and that there was major P input

from the litter fall. The N/P ratio in the A horizon (Na/Pa) showed a higher relative variability

than did those in the organic layer, as indicated by the CoV. The mean No/Po was 20.83 ±
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4.82 and the mean Na/Pa was 7.91 ± 2.42.

Table 5.2. Statistical summary of N and P content (mgkg−1) and ratios.

Mean SD MIN Median MAX CoV (%) Skew Kurt

No 12245 1986 8000 12200 17800 16.22 0.35 2.92
Po 624 190 310 610 1240 30.39 0.44 2.97
Na 2990 1348 700 2600 7300 45.07 0.81 3.52
Pa 389 171 160 330 920 43.96 1.40 4.52
No/Po 20.83 4.82 12.16 20.17 38.06 23.12 0.76 3.77
Na/Pa 7.91 2.42 1.89 7.78 13.85 30.55 0.21 3.06

Notes:SD, standard deviation; MIN, minimum; MAX, maximum; CoV, coefficient of variation; Skew, skewness;
Kurt, kurtosis; N, nitrogen; P, phosphorus; o, organic layer; and a, A horizon.

5.3.2 Model validation

Fig 5.2 and Fig 5.S1 show that with increasing k in repeated k-fold CV, mean R-square

and RMSE values indicate a better model performance, while R-square and RMSE variance

increases as well. Based on mean R-square, the LOO CV results were inferior to the repeated

10-fold and 20-fold, but superior to the repeated 2-fold results. Concerning repeated 5-fold

CV, LOO CV was superior for the predictions of the organic layer nutrients, but inferior for

the predictions of the mineral soil nutrients. Altogether, mean R-square values were higher for

Po and Pa compared to No and Na respectively. The results for No/Po and Na/Pa were the

worst, but showed the highest increase in model performance (mean R-square) with increasing k.

Fig 5.3 shows the standard deviations of all raster cells according to the 100 spatial predictions

resulting from the 100 models from the various CV schemes. The mean standard deviation and

the variance of the standard deviations decrease with increasing k for all models.

As an example, spatial prediction patterns of Po including mean values and the standard

deviations from the 100 predictions according to the various CV schemes are displayed in Fig 5.4.

In particular, spatial patterns of mean Po of the repeated 5-, 10-, and 20-fold CV are optically

very similar (Fig 5.4C, 5.4E, and 5.4G). Only the results from repeated 2-fold CV (Fig 5.4A)

show a comparatively smaller range of mean Po values with lower values in the valleys and

higher values along ridges. Furthermore, the increase of mean Po values with elevation, which

was particularly observable in the concave valley for repeated 5-, 10- and 20-fold CV, is less

pronounced for repeated 2-fold CV. As already indicated by Fig 5.3, standard deviation values

decrease with increasing k and a correspondingly bigger calibration dataset. The spatial patterns

of the standard deviations show an abrupt increase in the concave valley in the lower part of
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Fig. 5.2. Model validation based on R-square with cross validation methods. The
dotted lines indicate the leave-one-out cross-validated result. 2f, 2-fold 50 repetitions; 5f, 5-fold
20 repetitions; 10f, 10-fold 10 repetitions; 20f, 20-fold 5 repetitions; N, nitrogen; P, phosphorus;
o, organic layer; and a, A horizon.

the study area Fig 5.4B, 5.4D, 5.4F, and 5.4H).
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Fig. 5.3. Boxplots showing standard deviations of 100 predicted values for each raster
cell with cross validation methods. 2f, 2-fold 50 repetitions; 5f, 5-fold 20 repetitions; 10f,
10-fold 10 repetitions; 20f, 20-fold 5 repetitions; LOO, leave-one-out; N, nitrogen; P, phosphorus;
o, organic layer; and a, A horizon.
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Fig. 5.4. Maps of mean and coefficient of variation (CoV) of 100 models of phospho-
rus in the organic layer (Po) with cross validation methods. 2f50r, 2-fold 50 repetitions;
5f20r, 5-fold 20 repetitions; 10f10r, 10-fold 10 repetitions; 20f5r, 20-fold 5 repetitions.

5.3.3 Environmental drivers of spatial nutrient patterns

To analyze the influence of topography and vegetation on soil nutrients, the results from

repeated 10-fold CV are displayed. These correspond to a comparatively good performance for

all soil nutrients based on mean R-square, while R-square variance is not as high as for repeated

20-fold CV (Fig 5.2). The predictors selected with RFE are shown in Table 5.3. Surface curvature
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and elevation were selected for all soil nutrients. For Po and Pa, they were the only selected

predictors. NDVI and LiDAR vegetation predictors (Hfiravg, Hstd, and Hmax) were additionally

selected for No. For the N/P ratios parameters corresponding to water flow were additionally

selected. While the models for No/Po in correspondence to No also included vegetation metrics

as predictors (Hst, Hmax, and Hch), the model for Na/Pa included the NDVI instead. We

expected that the tree species influenced the spatial pattern of N/P ratios (Fig 5.1). Tree

species were initially also tested as predictors; however, these were not considered important

predictors based on previous results. Accordingly, they were excluded due to the simplicity of

the model.

Table 5.3. Statistical summary of N and P content (mgkg−1) and ratios.

Soil properties Predictors

No ELEV, NDVI, Hfiravg, CUR19, STWI, Hstd, Hmax
Po CUR19, ELEV
Na ELEV, CUR19
Pa CUR19, ELEV
No/Po CUR19, CA, Hstd, ELEV, Hmax, Hch
Na/Pa CUR19, CA, NDVI, ELEV, STWI

Notes: ELEV, elevation; CUR19, surface curvature (19 × 19 local window); STWI, SAGA topographical
wetness index; CA, Catchment area; SLO, slope degree; NDVI, normalized difference vegetation index; Hfiavg,
first return intensity average; Hstd, standard deviations of heights; Hmax, maximum height; Hccp, canopy
cover percentage; Hch, forest canopy and height (Hmax × Hccp); N, nitrogen; P, phosphorus; o, organic layer;
a, A horizon.

Our RF model revealed good performance for all soil nutrients based on R2 (Fig 5.2). Mean

R-square values ranged from 0.23 to 0.52. Pa showed the best result of the validation, while

that of the R-square for Na/Pa was lowest. Models for P showed better results than did models

for N.

Fig 5.5 shows the mean relative predictor importance of the RF models created by repeated

10-fold CV. Terrain predictors exhibited 5.37-53.07% of the reduction in the mean square error

(MSE). Surface curvature was the best or second best predictor for all soil nutrients, with the

exception of No (Fig 5.5); contributed 6.50-53.07% of the MSE. Elevation exhibited a similarly

high predictor importance: 9.55-39.22%. NDVI and LiDAR derived vegetation metrics (Hstd,

Hmax, Hpdy, and Hfiravg) were also important precitors for the nutrients. The results showing

the RF predictor importance were not consistent with the RFE results; however, the two results

were similar and there was no difference in the most important predictors (Table 5.3).

The map of each nutrient displays the mean of the 100 predictions from repeated 10-fold

CV (Fig 5.6). No and Na content increased with elevation. We found that P content differed
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Fig. 5.5. Mean relative importance of predictors for nitrogen and phosphorus based
on the increased mean square error (%incMSE) from random forest. N, nitrogen; P,
phosphorus; o, organic layer; and a, A horizon.

markedly between the upper and lower slopes. No/Po and Na/Pa were higher on the convex

upper slope.

Higher standard deviations of Po and No/Po were found at lower elevations and on the valley

floor (Fig 5.S2). The spatial uncertainties of Pa were higher at the upper part of the catchment.

Uncertainties of No (Fig 5.S2) were similarly complex like the spatial pattern of the mean values

(Fig 5.6A).

5.4 Discussion

5.4.1 Predictors of soil N and P

In this study, No (r=0.58, p<0.001) and Na (r=0.49, p<0.001) were correlated with eleva-

tion. Likewise, Bedison and Johnson (2009) also found a strong relationship between No and

elevation (R2= 0.41, P<0.001) in mountainous forested areas in the USA. Additionally, positive

relationships between Na and elevation were reported by Kunkel et al. (2011), Wang et al. (2013)

and Peng et al. (2013). The catchment area (CA) and topographical wetness index (TWI) were

important predictors of No in other studies (Johnson et al., 2000, Seibert et al., 2007). In our

study, CA and TWI were not significant for No, whereas Na was correlated with TWI (r=0.26,

p<0.05). According to Aandahl (1948), higher nitrogen content is found on the lower slope.

Higher Na was found in areas with high elevation and on the lower slope (Fig 5.6C), which
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Fig. 5.6. Predicted mean soil N and P content and ratios. N, nitrogen; P, phosphorus;
o, organic layer; and a, A horizon.

might have higher productivity (plants and microbes) and therefore, higher nitrogen fixation.

Vegetation can determine the spatial distribution of N in forest ecosystems (Bedison and

Johnson, 2009, Zhang et al., 2010). For No, NDVI ranked as the second most important predictor

and the LiDAR intensity of first returns (Hfiravg), which is often used as an indicator of forest

type (Ørka et al., 2009), was also an important predictor. Although NDVI and LiDAR predictors

were not selected as predictors of the Na model, Na was weakly correlated with maximum height

(r=0.24, p<0.05) and standard deviations of heights (r=0.23, p<0.05). Other studies have found

significant relationships between Na and NDVI which can measure vegetation density and

aboveground biomass (Kunkel et al., 2011, Kim et al., 2014, Sumfleth and Duttmann, 2008).

This implies that the density of forest cover and forest types affects the No content and No/Po
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ratios. Vesterdal et al. (2008) reported significant differences for No but not for Na based on tree

species and forest types. However, no relationship was found between P and LiDAR predictors.

As noted, LiDAR-derived predictors are promising for spatial soil predictions. In future

studies, vegetation predictors should be applied to forest areas where there is difference in the

variation of forest cover. Forest structure (LiDAR metrics) can have an effect on erosion and

deposition of materials, which in turn, might alter the soil nutrient content. Hahm et al. (2014)

confirmed that differences in erosion rates are affected by tree canopy cover. However, to our

knowledge, no studies have investigated the relationship between soil erosion, forest structures,

and nutrient status using LiDAR data so far.

5.4.2 Spatial patterns of N/P ratios

We found that N/P ratios increased with surface curvature and were higher on the upper

slope compared to the lower slope. This was due to P enrichment of the soil on the lower

slope and a more even distribution of N (Fig 5.6). No/Po and Na/Pa were strongly related to

surface curvature (Fig 5.6), which implies that P dynamics are affected strongly by topography.

This is likely because P was carried from the upper slope by surface and subsurface flows and

accumulated on the lower slope, as observed previously in other areas (Smeck, 1985). Soil erosion

in the watershed under study is strong due to storm events and steep slopes (Jeong et al., 2012,

Jung et al., 2012). Consequently, higher soil P content on the lower slope than on the upper

slope can lead to higher plant P uptake and higher plant litter P content, leading to a lower

No/Po. This implies that spatial patterns of No/Po might be generated by the interconnected

relationships between soil, topography, and vegetation. Similarly, Uriarte et al. (2015) found that

soil N/P was correlated with leaf litter N/P, and was determined by topography in a tropical

mountainous forest with heavy rainfall and steep slopes.

5.4.3 Model performance based on different cross validation schemes

We observed the typical bias-variance tradeoff when comparing the various CV schemes as

was discussed at length in Hastie et al. (2009). With a higher k, the mean test error decreases,

while test error variance increases (Fig 5.2, Fig 5.S1). In general, the performance of the learning

method varies with the size of the training set. A higher k results in a higher amount of training

data, which can be crucial with small datasets. This pattern was consistent with the findings

of previous studies. Park and Vlek (2002) tested the change in prediction error with different

numbers of training soil data sets, and confirmed that the prediction accuracy increases when
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increasing numbers of soil samples are used for the tuning dataset. A similar decrease in the

prediction error was found using various methods for soil prediction according to Ballabio

(2009). Generally, 10-fold CV is recommended in most studies (Remesan and Mathew, 2015,

James et al., 2013, Cichosz, 2015, Feigelson and Babu, 2012, Malley et al., 2011, Ambroise and

McLachlan, 2002). Remesan and Mathew (2015) noted that the use of very few datasets might

result in poorly calibrated models, while high amounts of data for calibration might lead to

overfitting. For small sample sizes, model calibration requires all possible datasets to improve

the model performance, while validation results can differ markedly depending on which samples

are included in the validation (Kuhn and Johnson, 2013). Therefore, Kuhn and Johnson (2013)

suggested repeated 10-fold CV for small sample sizes because the bias and variance are somewhat

balanced and the computational efficiency is good.

The size of the standard deviations of the spatial predictions, corresponds to the applied CV

scheme (Fig 5.3). Naturally, a low model bias goes along with low standard deviations. With

a high amount of samples included in the training dataset, the training datasets and hence

the 100 models are very similar to one another and will, therefore, make similar predictions.

That this ensemble of RF models (e.g., from repeated 20-fold or LOO CV) comes along with a

high error variance indicates that it is not a good choice, as the corresponding model might be

overfitting the data and perform poorly on other data.

5.5 Conclusions

Here, we created the first digital soil maps, showing the spatial pattern of N/P ratios using

LiDAR-derived vegetation and topographic predictors. These maps help to identify areas with

low nutrient availability. In our study, repeated 10-fold CV was recommended for model val-

idation with small sample sizes. While surface curvature and elevation were mostly sufficient

to explain the overall spatial pattern, particularly N contents as well as nutrient rations in the

organic layer benefited from the inclusion of the LiDAR derived vegetation metrics. N/P ratios

on the upper slope were higher than those on the lower slope and therefore, productivity on

the upper slope might be limited by P in mountainous ecosystems under monsoon conditions.

Finally, our analyses show that topographic and vegetation characteristics may help to predict

the spatial distribution of nutrients and hence, nutrient limitation in mountainous regions.

Author contributions



CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 149

Conceptualization: Gwanyong Jeong, Kwanghun Choi, Marie Spohn, Soo Jin Park, Bernd Huwe,

Mareike Ließ; Data curation: Gwanyong Jeong; Formal analysis: Gwanyong Jeong, Kwanghun

Choi; Funding acquisition: Bernd Huwe; Investigation: Gwanyong Jeong; Methodology: Gwany-

ong Jeong, Kwanghun Choi, Bernd Huwe; Project administration: Bernd Huwe; Resources:

Gwanyong Jeong; Software: Gwanyong Jeong, Kwanghun Choi; Supervision: Marie Spohn, Soo

Jin Park, Bernd Huwe, Mareike Ließ; Validation: Gwanyong Jeong; Visualization: Gwanyong

Jeong; Writing – original draft: Gwanyong Jeong; Writing – review & editing: Gwanyong Jeong,

Marie Spohn, Bernd Huwe, Mareike Ließ.

Funding

This study was carried out as part of the International Research Training Group TERRECO

(GRK 1565/ 1) at the University of Bayreuth. It was funded by the German Research Founda-

tion (DFG). This publication was funded by the German Research Foundation (DFG) and the

University of Bayreuth in the funding programme Open Access Publishing. The funders had

no role in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Acknowledgments

The authors would like to thank Bomchul Kim, Youngsoon Choi, and Jaesung Eum from Kang-

won National University, South Korea for providing a laboratory for the pretreatment of soil

samples.

Competing interests

The authors have declared that no competing interests exist.

References

Vitousek, P.M.; Hättenschwiler, S.; Olander, L.; Allison, S. Nitrogen and Nature. AMBIO 2002,

31, 97–101. doi:10.1579/0044-7447-31.2.97.

Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation:

mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15.

doi:10.1890/08-0127.1.

Laliberté, E.; Grace, J.B.; Huston, M.A.; Lambers, H.; Teste, F.P.; Turner, B.L.; Wardle, D.A.

https://doi.org/10.1579/0044-7447-31.2.97
https://doi.org/10.1890/08-0127.1


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 150

How does pedogenesis drive plant diversity? Trends in Ecology and Evolution 2013, 28, 331–

340. doi:10.1016/j.tree.2013.02.008.

Braun, S.; Thomas, V.F.D.; Quiring, R.; Flückiger, W. Does nitrogen deposition increase

forest production? The role of phosphorus. Environ. Pollut. 2010, 158, 2043–2052.

doi:10.1016/j.envpol.2009.11.030.

Manning, P. The Impact of Nitrogen Enrichment on Ecosystems and Their Services.

In Soil Ecology and Ecosystem Services; Oxford University Press, 2012; pp. 256–269.

doi:10.1093/acprof:oso/9780199575923.003.0022.

Jang, S.K.; Sung, M.Y.; Shin, A.Y.; Choi, J.S.; Son, J.S.; Ahn, J.Y.; Kim, J.C.; Shin, E.S. A

Study for Long-term Trend of Acid Deposition in Korea. J. Korea Society of Environmental

Administration 2011, 17, 183–192.

Kim, I.N.; Lee, K.; Gruber, N.; Karl, D.M.; Bullister, J.L.; Yang, S.; Kim, T.W. Increas-

ing anthropogenic nitrogen in the North Pacific Ocean. Science 2014, 346, 1102–1106.

doi:10.1126/science.1258396.

Kim, T.W.; Lee, K.; Najjar, R.G.; Jeong, H.D.; Jeong, H.J. Increasing N Abundance in the

Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition. Science 2011, 334, 505–

509. doi:10.1126/science.1206583.

Turner, B.L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol. 2008, 96, 698–702.

doi:10.1111/j.1365-2745.2008.01384.x.

Osman, K.T. Soils: Principles, Properties and Management; Springer Netherlands, 2013.

doi:10.1007/978-94-007-5663-2.

Huang, W.; Spohn, M. Effects of long-term litter manipulation on soil carbon, nitrogen,

and phosphorus in a temperate deciduous forest. Soil Biol. Biochem. 2015, 83, 12–18.

doi:10.1016/j.soilbio.2015.01.011.

Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the

microbial biomass? Biogeochemistry 2007, 85, 235–252. doi:10.1007/s10533-007-9132-0.

Peng, G.; Bing, W.; Guangpo, G.; Guangcan, Z. Spatial Distribution of Soil Organic Carbon

and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of

Northern China. PLOS ONE 2013, 8, e83592. doi:10.1371/journal.pone.0083592.

https://doi.org/10.1016/j.tree.2013.02.008
https://doi.org/10.1016/j.envpol.2009.11.030
https://doi.org/10.1093/acprof:oso/9780199575923.003.0022
https://doi.org/10.1126/science.1258396
https://doi.org/10.1126/science.1206583
https://doi.org/10.1111/j.1365-2745.2008.01384.x
https://doi.org/10.1007/978-94-007-5663-2
https://doi.org/10.1016/j.soilbio.2015.01.011
https://doi.org/10.1007/s10533-007-9132-0
https://doi.org/10.1371/journal.pone.0083592


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 151

Liu, Z.P.; Shao, M.A.; Wang, Y.Q. Spatial patterns of soil total nitrogen and soil total phos-

phorus across the entire Loess Plateau region of China. Geoderma 2013, 197-198, 67–78.

doi:10.1016/j.geoderma.2012.12.011.

Kunkel, M.L.; Flores, A.N.; Smith, T.J.; McNamara, J.P.; Benner, S.G. A simplified approach

for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma 2011,

165, 1–11. doi:10.1016/j.geoderma.2011.06.011.

Kim, J.; Grunwald, S.; Rivero, R.G. Soil Phosphorus and Nitrogen Predictions Across Spatial

Escalating Scales in an Aquatic Ecosystem Using Remote Sensing Images. IEEE Trans.

Geosci. Remote Sens. 2014, 52, 6724–6737. doi:10.1109/tgrs.2014.2301443.

Roger, A.; Libohova, Z.; Rossier, N.; Joost, S.; Maltas, A.; Frossard, E.; Sinaj, S. Spatial

variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma 2014, 217-

218, 26–36. doi:10.1016/j.geoderma.2013.11.001.

McKenzie, N.J.; Ryan, P.J. Spatial prediction of soil properties using environmental correlation.

Geoderma 1999, 89, 67–94. doi:10.1016/s0016-7061(98)00137-2.

Johnson, C.E.; Ruiz-Méndez, J.J.; Lawrence, G.B. Forest Soil Chemistry and Ter-

rain Attributes in a Catskills Watershed. Soil Sci. Soc. Am. J. 2000, 64, 1804.

doi:10.2136/sssaj2000.6451804x.

Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal

forests. Geoderma 2007, 141, 139–148. doi:10.1016/j.geoderma.2007.05.013.

Wilcke, W.; Oelmann, Y.; Schmitt, A.; Valarezo, C.; Zech, W.; Homeier, J. Soil properties and

tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J. Plant

Nutr. Soil Sci. 2008, 171, 220–230. doi:10.1002/jpln.200625210.

Soethe, N.; Lehmann, J.; Engels, C. Nutrient availability at different altitudes in a tropical mon-

tane forest in Ecuador. J. Trop. Ecology 2008, 24, 397–406. doi:10.1017/s026646740800504x.

McBratney, A.B.; Santos, M.L.M.; Minasny, B. On digital soil mapping. Geoderma 2003,

117, 3–52. doi:10.1016/s0016-7061(03)00223-4.

Grunwald, S., Ed. Environmental Soil-Landscape Modeling; CRC Press: Boca Raton, 2005.

doi:10.1201/9781420028188.

https://doi.org/10.1016/j.geoderma.2012.12.011
https://doi.org/10.1016/j.geoderma.2011.06.011
https://doi.org/10.1109/tgrs.2014.2301443
https://doi.org/10.1016/j.geoderma.2013.11.001
https://doi.org/10.1016/s0016-7061(98)00137-2
https://doi.org/10.2136/sssaj2000.6451804x
https://doi.org/10.1016/j.geoderma.2007.05.013
https://doi.org/10.1002/jpln.200625210
https://doi.org/10.1017/s026646740800504x
https://doi.org/10.1016/s0016-7061(03)00223-4
https://doi.org/10.1201/9781420028188


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 152

Ballabio, C. Spatial prediction of soil properties in temperate mountain regions using support

vector regression. Geoderma 2009, 151, 338–350. doi:10.1016/j.geoderma.2009.04.022.

Dan Binkley, R.F.F. Ecology and Management of Forest Soils; John Wiley & Sons, 2012.

Grunwald, S.; Vasques, G.M.; Rivero, R.G. Fusion of Soil and Remote Sensing Data

to Model Soil Properties. In Advances in Agronomy; Elsevier, 2015; pp. 1–109.

doi:10.1016/bs.agron.2014.12.004.

Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and

terrain mapping — A review. Geoderma 2011, 162, 1–19. doi:10.1016/j.geoderma.2010.12.018.

Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Appli-

cations; Oxford University Press, 2010.

Zellweger, F.; Braunisch, V.; Morsdorf, F.; Baltensweiler, A.; Abegg, M.; Roth, T.; Bugmann,

H.; Bollmann, K. Disentangling the effects of climate, topography, soil and vegetation on

stand-scale species richness in temperate forests. For. Ecol. Manage. 2015, 349, 36–44.

doi:10.1016/j.foreco.2015.04.008.

Ørka, H.O.; Næsset, E.; Bollandsås, O.M. Classifying species of individual trees by intensity

and structure features derived from airborne laser scanner data. Remote Sens. Environ. 2009,

113, 1163–1174. doi:10.1016/j.rse.2009.02.002.

Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19.

doi:10.1016/0016-7061(76)90066-5.

Smeck, N.E. Phosphorus dynamics in soils and landscapes. Geoderma 1985, 36, 185–199.

doi:10.1016/0016-7061(85)90001-1.

Korea meteorological administration. Korea weather service. Available: http://www.kma.go.kr/,

2015. Korea meteorological administration.

Korea Institute of Geology, Mining, and Material. Explanatory note of the Gangreung Sokcho

sheet 1:250,000; Korea Institute of Geology, Mining, and Material: Daejeon, 2001.

Chough, S.K. Geology and Sedimentology of the Korean Peninsula; Elsevier, 2013.

doi:10.1016/c2012-0-02847-5.

Lee, G.R. Characteristics of geomorphological surface and analysis of deposits in fluvial terraces

at upperreach of Soyang river. J. Korean Geogr. Soc. 2004, 39, 27–44.

https://doi.org/10.1016/j.geoderma.2009.04.022
https://doi.org/10.1016/bs.agron.2014.12.004
https://doi.org/10.1016/j.geoderma.2010.12.018
https://doi.org/10.1016/j.foreco.2015.04.008
https://doi.org/10.1016/j.rse.2009.02.002
https://doi.org/10.1016/0016-7061(76)90066-5
https://doi.org/10.1016/0016-7061(85)90001-1
https://doi.org/10.1016/c2012-0-02847-5


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 153

Wohl, E. Mountain rivers; American Geophysical Union: Washington, D.C, 2000.

National Academy of Agricultural Science. Korean Soil Information System. Available:

http://soil.rda.go.kr/soil/index.jsp.

Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling

in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388.

doi:10.1016/j.cageo.2005.12.009.

Roudier, P.; Hewitt, A.E.; Beaudette, D.E., Digital Soil Assessments and Beyond; CRC Press:

Boca Raton, 2012; chapter A conditioned Latin hypercube sampling algorithm incorporating

operational constraints, pp. 227–231. doi:10.1201/b12728.

Deutsche Einheitsverfahren zu Wasser. German Standard Methods for the Examination of

Water, Wastewater, and Sludge, 2002.

Franklin, S.E. Remote sensing for biodiversity and wildlife management; McGraw-Hill: New

York, 2010.

Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of

small-footprint airborne laser scanning for extracting forest inventory data in boreal forests.

Int. J. Remote Sens. 2008, 29, 1339–1366. doi:10.1080/01431160701736489.

Asner, G.P.; Ustin, S.L.; Townsend, P.A.; Martin, R.E.; Chadwick, K.D., Land Resources Moni-

toring, Modeling, and Mapping with Remote Sensing; CRC Press: Boca Raton, 2015; chapter

Forest biophysical and biochemical properties from hyperspectral and LiDAR remote sensing,

pp. 429–448. doi:10.1201/b19322.

Hyyppä, J.; Karjalainen, M.; Liang, X.; Jaakkola, A.; Yu, X.; Wulder, M.; Hollaus, M.; White,

J.C.; Vastaranta, M.; Karila, K.; Kaartinen, H.; Vaaja, M.; Kankare, V.V.; Kukko, A.;

Holopainen, M.; Hyyppä, H.; Katoh, M., Land Resources Monitoring, Modeling, and Map-

ping with Remote Sensing; CRC Press: Boca Raton, 2015; Vol. 2, Remote Sensing Handbook,

chapter Remote Sensing of Forests from Lidar and Radar, pp. 397–427.

National Geographic Information Institute. National Spatial Data Information Portal. Available

online: https://www.nsic.go.kr, 2015.

Isenburg, M. LAStools—efficient tools for LiDAR processing, version 2.1. Available:

http://lastools.org, 2014.

https://doi.org/10.1016/j.cageo.2005.12.009
https://doi.org/10.1201/b12728
https://doi.org/10.1080/01431160701736489
https://doi.org/10.1201/b19322


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 154

Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf.

Processes Landforms 1987, 12, 47–56. doi:10.1002/esp.3290120107.

Freeman, T.G. Calculating catchment area with divergent flow based on a regular grid. Comput.

Geosci. 1991, 17, 413–422. doi:10.1016/0098-3004(91)90048-i.

Böhner, J.; Köthe, R.; Conrad, O.; Gross, J.; Ringeler, A.; Selige, T., Soil Classification 2001;

The European Soil Bureau, Joint Research Centre, 2002; chapter Soil Regionalisation by

Means of Terrain Analysis and Process Parameterisation, pp. 213–222.

Park, S.J.; McSweeney, K.; Lowery, B. Identification of the spatial distribution of soils using

a process-based terrain characterization. Geoderma 2001, 103, 249–272. doi:10.1016/s0016-

7061(01)00042-8.

Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens.

1986, 7, 1395–1416. doi:10.1080/01431168608948944.

Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.;

Prentice Hall Press: Upper Saddle River, NJ, USA, 2015.

Thenkabail, P.; Lyon, J.; Huete, A. Advances in Hyperspectral Remote Sensing of Vegetation

and Agricultural Croplands. In Hyperspectral Remote Sensing of Vegetation; CRC Press, 2011;

pp. 3–36. doi:10.1201/b11222-3.

Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann,

V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model

Dev. 2015, 8, 1991–2007. doi:10.5194/gmd-8-1991-2015.

Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. doi:10.1023/A:1010933404324.

Kuhn, M.; Johnson, K. Applied predictive modeling; Springer New York: New York, 2013.

doi:10.1007/978-1-4614-6849-3.

Strobl, C.; Malley, J.; Tutz, G. An introduction to recursive partitioning: Rationale, application,

and characteristics of classification and regression trees, bagging, and random forests. Psychol.

Methods 2009, 14, 323–348. doi:10.1037/a0016973.

Kampichler, C.; Wieland, R.; Calmé, S.; Weissenberger, H.; Arriaga-Weiss, S. Classification

in conservation biology: A comparison of five machine-learning methods. Ecol. Inf. 2010,

5, 441–450. doi:10.1016/j.ecoinf.2010.06.003.

https://doi.org/10.1002/esp.3290120107
https://doi.org/10.1016/0098-3004(91)90048-i
https://doi.org/10.1016/s0016-7061(01)00042-8
https://doi.org/10.1016/s0016-7061(01)00042-8
https://doi.org/10.1080/01431168608948944
https://doi.org/10.1201/b11222-3
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1037/a0016973
https://doi.org/10.1016/j.ecoinf.2010.06.003


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 155

Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil organic carbon concentrations and

stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis.

Geoderma 2008, 146, 102–113. doi:10.1016/j.geoderma.2008.05.008.

Wiesmeier, M.; Barthold, F.; Blank, B.; Kögel-Knabner, I. Digital mapping of soil organic

matter stocks using Random Forest modeling in a semi-arid steppe ecosystem. Plant Soil

2011, 340, 7–24. doi:10.1007/s11104-010-0425-z.

Tesfa, T.K.; Tarboton, D.G.; Chandler, D.G.; McNamara, J.P. Modeling soil depth from topo-

graphic and land cover attributes. Water Resour. Res. 2009, 45. doi:10.1029/2008wr007474.

Ließ, M.; Glaser, B.; Huwe, B. Functional soil-landscape modelling to estimate slope sta-

bility in a steep Andean mountain forest region. Geomorphology 2011, 132, 287–299.

doi:10.1016/j.geomorph.2011.05.015.

Brungard, C.W.; Boettinger, J.L.; Duniway, M.C.; Wills, S.A.; Edwards, T.C. Machine learning

for predicting soil classes in three semi-arid landscapes. Geoderma 2015, 239-240, 68–83.

doi:10.1016/j.geoderma.2014.09.019.

Miller, B.A.; Koszinski, S.; Wehrhan, M.; Sommer, M. Impact of multi-scale pre-

dictor selection for modeling soil properties. Geoderma 2015, 239-240, 97–106.

doi:10.1016/j.geoderma.2014.09.018.

Poggio, L.; Gimona, A.; Brewer, M.J. Regional scale mapping of soil properties and their

uncertainty with a large number of satellite-derived covariates. Geoderma 2013, 209-210, 1–

14. doi:10.1016/j.geoderma.2013.05.029.

Molinaro, A.M.; Simon, R.; Pfeiffer, R.M. Prediction error estimation: a comparison of resam-

pling methods. Bioinformatics 2005, 21, 3301–3307. doi:10.1093/bioinformatics/bti499.

Bedison, J.E.; Johnson, A.H. Controls on the Spatial Patterns of Carbon and Nitrogen in

Adirondack Forest Soils along a Gradient of Nitrogen Deposition. Soil Sci. Soc. Am. J. 2009,

73, 2105. doi:10.2136/sssaj2008.0336.

Wang, K.; Zhang, C.; Li, W. Predictive mapping of soil total nitrogen at a regional scale: A

comparison between geographically weighted regression and cokriging. Appl. Geogr. 2013,

42, 73–85. doi:10.1016/j.apgeog.2013.04.002.

Aandahl, A.R. The characterization of slope positions and their influence on total nitrogen

content of a few virgin soils of Western Iowa. Soil Sci. Soc. Am. J. 1948, 13, 449–454.

https://doi.org/10.1016/j.geoderma.2008.05.008
https://doi.org/10.1007/s11104-010-0425-z
https://doi.org/10.1029/2008wr007474
https://doi.org/10.1016/j.geomorph.2011.05.015
https://doi.org/10.1016/j.geoderma.2014.09.019
https://doi.org/10.1016/j.geoderma.2014.09.018
https://doi.org/10.1016/j.geoderma.2013.05.029
https://doi.org/10.1093/bioinformatics/bti499
https://doi.org/10.2136/sssaj2008.0336
https://doi.org/10.1016/j.apgeog.2013.04.002


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 156

Zhang, Z.; Yu, X.; Qian, S.; Li, J. Spatial variability of soil nitrogen and phosphorus of a mixed for-

est ecosystem in Beijing, China. Environ. Earth Sci. 2010, 60, 1783–1792. doi:10.1007/s12665-

009-0314-z.

Sumfleth, K.; Duttmann, R. Prediction of soil property distribution in paddy soil landscapes

using terrain data and satellite information as indicators. Ecol. Indic. 2008, 8, 485–501.

doi:10.1016/j.ecolind.2007.05.005.

Vesterdal, L.; Schmidt, I.K.; Callesen, I.; Nilsson, L.O.; Gundersen, P. Carbon and nitrogen in

forest floor and mineral soil under six common European tree species. For. Ecol. Manage.

2008, 255, 35–48. doi:10.1016/j.foreco.2007.08.015.

Hahm, W.J.; Riebe, C.S.; Lukens, C.E.; Araki, S. Bedrock composition regulates mountain

ecosystems and landscape evolution. Proc. Natl. Acad. Sci. U.S.A 2014, 111, 3338–3343.

doi:10.1073/pnas.1315667111.

Jeong, J.J.; Bartsch, S.; Fleckenstein, J.H.; Matzner, E.; Tenhunen, J.D.; Lee, S.D.; Park, S.K.;

Park, J.H. Differential storm responses of dissolved and particulate organic carbon in a

mountainous headwater stream, investigated by high-frequency, in situ optical measurements.

J. Geophys. Res. Biogeosci. 2012, 117, n/a–n/a. doi:10.1029/2012jg001999.

Jung, B.J.; Lee, H.J.; Jeong, J.J.; Owen, J.; Kim, B.; Meusburger, K.; Alewell, C.; Gebauer, G.;

Shope, C.; Park, J.H. Storm pulses and varying sources of hydrologic carbon export from a

mountainous watershed. J. Hydrol. 2012, 440-441, 90–101. doi:10.1016/j.jhydrol.2012.03.030.

Uriarte, M.; Turner, B.L.; Thompson, J.; Zimmerman, J.K. Linking spatial patterns of leaf

litterfall and soil nutrients in a tropical forest: a neighborhood approach. Ecol. Appl. 2015,

25, 2022–2034. doi:10.1890/15-0112.1.

Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer New

York, 2009. doi:10.1007/978-0-387-84858-7.

Park, S.J.; Vlek, P.L.G. Environmental correlation of three-dimensional soil spatial variability:

a comparison of three adaptive techniques. Geoderma 2002, 109, 117–140. doi:10.1016/s0016-

7061(02)00146-5.

Remesan, R.; Mathew, J. Hydrological Data Driven Modelling: A Case Study Approach; Springer

International Publishing, 2015. doi:10.1007/978-3-319-09235-5.

https://doi.org/10.1007/s12665-009-0314-z
https://doi.org/10.1007/s12665-009-0314-z
https://doi.org/10.1016/j.ecolind.2007.05.005
https://doi.org/10.1016/j.foreco.2007.08.015
https://doi.org/10.1073/pnas.1315667111
https://doi.org/10.1029/2012jg001999
https://doi.org/10.1016/j.jhydrol.2012.03.030
https://doi.org/10.1890/15-0112.1
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1016/s0016-7061(02)00146-5
https://doi.org/10.1016/s0016-7061(02)00146-5
https://doi.org/10.1007/978-3-319-09235-5


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 157

James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with

Applications in R; Springer New York, 2013. doi:10.1007/978-1-4614-7138-7.

Cichosz, P. Data Mining Algorithms: Explained Using R; John Wiley & Sons, Ltd: Chichester,

West Sussex ; Malden, MA, 2015. doi:10.1002/9781118950951.

Feigelson, E.D.; Babu, G.J. Modern Statistical Methods for Astronomy: With R Applications;

Cambridge University Press, 2012. doi:10.1017/cbo9781139015653.

Malley, J.D.; Malley, K.G.; Pajevic, S. Statistical Learning for Biomedical Data; Cambridge

University Press, 2011. doi:10.1017/cbo9780511975820.

Ambroise, C.; McLachlan, G.J. Selection bias in gene extraction on the basis of mi-

croarray gene-expression data. Proc. Natl. Acad. Sci. U.S.A 2002, 99, 6562–6566.

doi:10.1073/pnas.102102699.

https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1002/9781118950951
https://doi.org/10.1017/cbo9781139015653
https://doi.org/10.1017/cbo9780511975820
https://doi.org/10.1073/pnas.102102699


CHAPTER 5. SPATIAL PATTERNS OF TOPSOIL NITROGEN AND PHOSPHORUS 158

Supplemetary material

Fig. 5.S1. Model validation based on root mean square error (RMSE) with cross
validation methods. The dotted lines refer to the leave-one-out cross-validated result. 2f, 2-
fold 50 repetitions; 5f, 5-fold 20 repetitions; 10f, 10-fold 10 repetitions; 20f, 20-fold 5 repetitions;
N, nitrogen; P, phosphorus; o, organic layer; and a, A horizon.
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Fig. 5.S2. Predicted SD nitrogen and phosphorus content and ratios. SD, standard
deviation; N, nitrogen; P, phosphorus; o, organic layer; and a, A horizon.
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