18 research outputs found

    An Enhanced Multimodal Stacking Scheme for Online Pornographic Content Detection

    No full text
    An enhanced multimodal stacking scheme is proposed for quick and accurate online detection of harmful pornographic contents on the Internet. To accurately detect harmful contents, the implicative visual features (auditory features) are extracted using a bi-directional RNN (recurrent neural network) with VGG-16 (a multilayered dilated convolutional network) to implicitly express the signal change patterns over time within each input. Using only the implicative visual and auditory features, a video classifier and an audio classifier are trained, respectively. By using both features together, one fusion classifier is also trained. Then, these three component classifiers are stacked in the enhanced ensemble scheme to reduce the false negative errors in a serial order of the fusion classifier, video classifier, and audio classifier for a quick online detection. The proposed multimodal stacking scheme yields an improved true positive rate of 95.40% and a false negative rate of 4.60%, which are superior values to previous studies. In addition, the proposed stacking scheme can accurately detect harmful contents up to 74.58% and an average rate of 62.16% faster than the previous stacking scheme. Therefore, the proposed enhanced multimodal stacking scheme can be used to quickly and accurately filter out harmful contents in the online environments

    A Person Re-Identification Scheme Using Local Multiscale Feature Embedding with Dual Pyramids

    No full text
    In this paper, we propose a new person re-identification scheme that uses dual pyramids to construct and utilize the local multiscale feature embedding that reflects different sizes and shapes of visual feature elements appearing in various areas of a person image. In the dual pyramids, a scale pyramid reflects the visual feature elements in various sizes and shapes, and a part pyramid selects elements and differently combines them for the feature embedding per each region of the person image. In the experiments, the performance of the cases with and without each pyramid were compared to verify that the proposed scheme has an optimal structure. The state-of-the-art studies known in the field of person re-identification were also compared for accuracy. According to the experimental results, the method proposed in this study showed a maximum of 99.25% Rank-1 accuracy according to the dataset used in the experiments. Based on the same dataset, the accuracy was determined to be about 3.55% higher than the previous studies, which used only person images, and about 1.25% higher than the other studies using additional meta-information besides images of persons

    Alantolactone Improves Prolonged Exposure of Interleukin-6-Induced Skeletal Muscle Inflammation Associated Glucose Intolerance and Insulin Resistance

    No full text
    The pro-inflammatory cytokine, Interleukin-6 (IL-6), has been proposed to be one of the mediators that link chronic inflammation to glucose intolerance and insulin resistance. Many studies have demonstrated the effects of IL-6 on insulin action in the skeletal muscle. However, few studies have investigated the effect of long-term treatment of IL-6, leading to glucose intolerance and insulin resistance. In the present study, we observed protective effects of alantolactone, a sesquiterpene lactone isolated from Inula helenium against glucose intolerance and insulin resistance induced by prolonged exposure of IL-6. Alantolactone has been reported to have anti-inflammatory and anti-cancer effects through IL-6-induced signal transducer and activator of transcription 3 (STAT3) signaling pathway. The relationship between IL-6 exposure and expression of toll-like receptor 4 (TLR4), involved in inflammation in the skeletal muscle, and the underlying mechanisms were investigated. We observed maximum dysregulation of glucose uptake after 40 ng/ml IL-6 induction for 24 h in L6 myotubes. Prolonged IL-6 exposure suppressed glucose uptake regulating alpha serine/threonine-protein kinase (AKT) phosphorylation; however, pretreatment with alantolactone activated AKT phosphorylation and improved glucose uptake. Alantolactone also attenuated IL-6-stimulated STAT3 phosphorylation, followed by an increase in expression of negative regulator suppressor of cytokine signaling 3 (SOCS3). Furthermore, IL-6-induced expression of pathogen recognition receptor, TLR4, was also suppressed by alantolactone pretreatment. Post-silencing of STAT3 using siRNA approach, IL-6-stimulated siRNA-STAT3 improved glucose uptake and suppressed TLR4 gene expression. Taken together, we propose that, as a STAT3 inhibitor, alantolactone, improves glucose regulation in the skeletal muscle by inhibiting IL-6-induced STAT3-SOCS3 signaling followed by inhibition of the TLR4 gene expression. Therefore, alantolactone can be a promising candidate for the treatment of inflammation-associated glucose intolerance and insulin resistance

    A Sesquiterpenoid from Farfarae Flos Induces Apoptosis of MDA-MB-231 Human Breast Cancer Cells through Inhibition of JAK–STAT3 Signaling

    No full text
    Triple-negative breast cancers (TNBCs) are hard-to-treat breast tumors with poor prognosis, which need to be treated by chemotherapy. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor involved in proliferation, metastasis, and invasion of cancer cells. Therefore, research on searching for promising compounds with metabolism that suppress phosphorylation or transcription of STAT3 in TNBC cells is important. Farfarae Flos is well known as a traditional medicine for treating inflammation. However, few studies have shown that sesquiterpenoids from Farfarae Flos have an anticancer effect. In this study, efficient separation methods and an MTT assay were conducted to isolate an anticancer compound from Farfarae Flos against TNBC MDA-MB-231 cells. Here, 7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a compound isolated from Farfarae Flos showed a potent cytotoxic effect on MDA-MB-231 cells. ECN inhibited JAK–STAT3 signaling and suppressed the expression of STAT3 target genes. In addition, ECN induced apoptosis through both extrinsic and intrinsic pathways. Furthermore, we investigated that ECN inhibited the growth of tumors by intraperitoneal administration in mice injected with MDA-MB-231 cells. Therefore, ECN can be an effective chemotherapeutic agent for breast cancer treatment

    Effects of Crosslinking Methods on Network Structure and Enzymatic Degradation of Methacrylate-Functionalized Chitosan Hydrogel

    No full text
    Polysaccharides, such as hyaluronic acid, alginate, or chitosan, can be modified by addition of reactive functional groups to enable chemical crosslinking. Here, we studied how different methods of crosslinking methacrylate-functionalized chitosan affected the network structures of the resulting hydrogels. We then investigated how the porous network structures in turn influenced stiffness, macromolecular diffusion through the pores, and enzymatic degradation. All these properties are relevant for utilization of the chemically crosslinked hydrogels in biomedical applications, including tissue engineering and delivery of therapeutic agents. We made chitosan hydrogels using four crosslinking methods, which differ by type and by reaction kinetics. We found that four chitosan hydrogels having identical polymer fractions at an equilibrium swelling exhibited marked differences in their shear moduli, rate of dextran diffusion, and especially their enzymatic degradation behaviors. We inferred that these differences originated in variations among network structures, which were characterized by the formation of chain bundles and associated network heterogeneity as determined by small-angle X-ray scattering analysis

    Water Sport Tourists’ Hesitation in Decision-Making during the COVID-19 Pandemic: The Moderating Effect of Destination Image

    No full text
    Understanding the effect of risk factors on tourists’ hesitation in choosing a destination is vital for successful management in tourism, especially in the pandemic era. Based on protection motivation theory, this study investigated the impact of sport tourists’ perceived risk associated with COVID-19 on their hesitation to choose a tourist destination in the context of water sport tourism. Further, we examined whether the relationship changes according to the levels of tourists’ destination image. Data from a survey of water sport tourists (n = 312) were analyzed using structural equation modeling and Hayes PROCESS macro with bootstrapping procedures. Findings of this research empirically demonstrated that risk factors influence hesitation in choosing a destination. Furthermore, the moderating effect of destination image on the influences of perceived risks on hesitation was identified. The study’s theoretical and practical contributions to the sport tourism literature are also discussed

    Sesquiterpenoids from Tussilago farfara Flower Bud Extract for the Eco-Friendly Synthesis of Silver and Gold Nanoparticles Possessing Antibacterial and Anticancer Activities

    No full text
    Sesquiterpenoids from the flower bud extract of Tussilago farfara were effectively utilized as a reducing agent for eco-friendly synthesis of silver and gold nanoparticles. The silver and gold nanoparticles had a characteristic surface plasmon resonance at 416 nm and 538 nm, respectively. Microscopic images revealed that both nanoparticles were spherical, and their size was measured to be 13.57 ± 3.26 nm for the silver nanoparticles and 18.20 ± 4.11 nm for the gold nanoparticles. The crystal structure was determined to be face-centered cubic by X-ray diffraction. Colloidal stability of the nanoparticle solution was retained in a full medium, which was used in the cell culture experiment. The antibacterial activity result demonstrated that the silver nanoparticles showed better activity (two- to four-fold enhancement) than the extract alone on both Gram-positive and Gram-negative bacteria. Interestingly, the highest antibacterial activity was obtained against vancomycin-resistant Enterococci Van-A type Enterococcus faecium. Cytotoxicity on cancer cell lines confirmed that gold nanoparticles were more cytotoxic than silver nanoparticles. The highest cytotoxicity was observed on human pancreas ductal adenocarcinoma cells. Therefore, both nanoparticles synthesized with the sesquiterpenoids from T. farfara flower bud extract can be applicable as drug delivery vehicles of anticancer or antibacterial agents for future nanomedicine applications

    Neuroprotection against 6-OHDA toxicity in PC12 cells and mice through the Nrf2 pathway by a sesquiterpenoid from Tussilago farfara

    No full text
    Oxidative stress plays a key role in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Therefore, the nuclear factor-E2-related factor 2 (Nrf2), a key regulator of the antioxidative response, is considered to be important as a therapeutic target for neurodegenerative diseases. We investigated the underlying mechanism of Nrf2-mediated neuroprotective effects against oxidative stress in the PC12 cell line by 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), one of the sesquiterpenoids in Farfarae Flos. Pretreatment of PC12 cells with ECN had a protective effect against hydrogen peroxide (H2O2)- or 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. ECN upregulated the ARE-luciferase activity and induced the mRNA expression of Nrf2 and antioxidant enzyme heme oxygenase-1 (HO-1). Knockdown of Nrf2 by small, interfering RNA (siRNA) abrogated the upregulation of HO-1, indicating that ECN had induced HO-1 via the Nrf2 pathway. Pretreatment with the thiol reducing agents, N-acetylcysteine (NAC) or dithiothreitol (DTT), attenuated Nrf2 activation and HO-1 expression. However, the non-thiol reducing antioxidant, Trolox, failed to inhibit HO-1 induction by ECN. These results suggest that ECN may directly interact with Kelch-like ECH-associated protein 1 (Keap1) and modify critical cysteine thiols present in the proteins responsible for Nrf2-mediated upregulation of HO-1. In a 6-OHDA-induced mouse model of PD, administration of ECN ameliorated motor impairments and dopaminergic neuronal damage. Taken together, ECN exerts neuroprotective effects by activating the Nrf2/HO-1 signaling pathway in both PC12 cells and mice. Thus, ECN, as an Nrf2 activator, could be an attractive therapeutic candidate for the neuroprotection or treatment of neurodegenerative diseases. Keywords: Neuroprotection, Neurodegeneration, Nrf2, Heme oxygenase-1, Tussilago farfar

    Tussilagonone Ameliorates Psoriatic Features in Keratinocytes and Imiquimod-Induced Psoriasis-Like Lesions in Mice via NRF2 Activation

    No full text
    Psoriasis is a common inflammatory skin disorder that is characterized by keratinocyte hyperproliferation and abnormal differentiation, resulting in the thickening of the epidermis and stratum corneum. In this study, we investigated in vitro and in vivo pharmacological effects of tussilagonone (TGN), a sesquiterpenoid isolated from Tussilago farfara, on transcription factors relevant for the pathogenesis of psoriasis. TGN inhibited activation of NF-κB and STAT3, leading to the attenuated expression of psoriasis-related inflammatory genes and suppression of keratinocyte hyperproliferation. Mechanistically, we show that the inhibition of NF-κB and STAT3 by TGN is mediated through activation of the cytoprotective transcription factor NRF2. Evaluation of in vivo antipsoriatic effects of topical TGN in the imiquimod-induced psoriasis-like dermatitis mouse model demonstrated amelioration of imiquimod-induced phenotypical changes, lesion severity score, epidermal thickening, and reduction in dermal cellularity. The spleen index also diminished in TGN-treated mice, suggesting anti-inflammatory properties of TGN. Moreover, TGN significantly attenuated the imiquimod-induced mRNA levels of psoriasis-associated inflammatory cytokines and antimicrobial peptides and reduced epidermal hyperproliferation. Taken together, TGN, as a potent NRF2 activator, is a promising therapeutic candidate for the development of antipsoriatic agents derived from medicinal plants

    Platycodon saponins from Platycodi Radix (Platycodon grandiflorum) for the Green Synthesis of Gold and Silver Nanoparticles

    Get PDF
    Abstract A green synthesis of gold and silver nanoparticles is described in the present report using platycodon saponins from Platycodi Radix (Platycodon grandiflorum) as reducing agents. Platycodin D (PD), a major triterpenoidal platycodon saponin, was enriched by an enzymatic transformation of an aqueous extract of Platycodi Radix. This PD-enriched fraction was utilized for processing reduction reactions of gold and silver salts to synthesize gold nanoparticles (PD-AuNPs) and silver nanoparticles (PD-AgNPs), respectively. No other chemicals were introduced during the reduction reactions, providing an entirely green, eco-friendly, and sustainable method. UV-visible spectra showed the surface plasmon resonance bands of PD-AuNPs at 536 nm and PD-AgNPs at 427 nm. Spherically shaped nanoparticles were observed from high-resolution transmission electron microscopy with average diameters of 14.94 ± 2.14 nm for PD-AuNPs and 18.40 ± 3.20 nm for PD-AgNPs. Minor triangular and other polygonal shapes were also observed for PD-AuNPs along with spherical ones. Atomic force microscopy (AFM) images also demonstrated that both nanoparticles were mostly spherical in shape. Curvature-dependent evolution was employed to enhance the AFM images and precisely measure the sizes of the nanoparticles. The sizes were measured as 19.14 nm for PD-AuNPs and 29.93 nm for PD-AgNPs from the enhanced AFM images. Face-centered cubic structures for both nanoparticles were confirmed by strong diffraction patterns from high-resolution X-ray diffraction analyses. Fourier transform infrared spectra revealed the contribution of –OH, aromatic C=C, C–O, and C–H functional groups to the synthesis. Furthermore, the catalytic activity of PD-AuNPs was assessed with a reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The catalytic activity results suggest the potential application of these gold nanoparticles as catalysts in the future. The green strategy reported in this study using saponins as reducing agents will pave new roads to develop novel nanomaterials with versatile applications
    corecore