2 research outputs found

    Accelerated Bone Regeneration by Two-Photon Photoactivated Carbon Nitride Nanosheets

    No full text
    Human bone marrow-derived mesenchymal stem cells (hBMSCs) present promising opportunities for therapeutic medicine. Carbon derivatives showed only marginal enhancement in stem cell differentiation toward bone formation. Here we report that red-light absorbing carbon nitride (C<sub>3</sub>N<sub>4</sub>) sheets lead to remarkable proliferation and osteogenic differentiation by runt-related transcription factor 2 (Runx2) activation, a key transcription factor associated with osteoblast differentiation. Accordingly, highly effective hBMSCs-driven mice bone regeneration under red light is achieved (91% recovery after 4 weeks compared to 36% recovery in the standard control group in phosphate-buffered saline without red light). This fast bone regeneration is attributed to the deep penetration strength of red light into cellular membranes <i>via</i> tissue and the resulting efficient cell stimulation by enhanced photocurrent upon two-photon excitation of C<sub>3</sub>N<sub>4</sub> sheets near cells. Given that the photoinduced charge transfer can increase cytosolic Ca<sup>2+</sup> accumulation, this increase would promote nucleotide synthesis and cellular proliferation/differentiation. The cell stimulation enhances hBMSC differentiation toward bone formation, demonstrating the therapeutic potential of near-infrared two-photon absorption of C<sub>3</sub>N<sub>4</sub> sheets in bone regeneration and fracture healing

    Additional file 1: of The transcriptional profile of coronary arteritis in Kawasaki disease

    No full text
    Supplemental Methods. Table S1. RNA sequencing metrics. Table S2. All differentially expressed genes (8 KD cases vs 7 controls). Table S3. Dysregulated molecular pathways (8 KD cases vs 7 controls). Table S4. Differential expression of genes involved in antigen presentation and dendritic cell function in KD compared to control coronary arteries by real-time reverse transcriptase PCR assays. Table S5. Extracellular genes dysregulated in 8 KD coronary arteries compared with 7 childhood control coronary arteries. Figure S1. Principal components analysis of all genes in 8 KD (4 treated and 4 untreated) and 7 childhood control coronary artery tissues demonstrates that gene expression of untreated (red dots) and treated (black dots) KD patients are not distinguishable. (PDF 382 kb
    corecore