367 research outputs found

    Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction.

    Get PDF
    Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al(3+) plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10(-4) S cm(-1) than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition

    Exploring South Korea’s Ocean Economy : the Korea National Ocean Economy Survey 2017-2019

    Get PDF
    As the economic contribution of the ocean and fisheries industry increases, it is essential to identify industrial characteristics and propose specialized strategies based on data. However, there has been a lack of research on the establishment of an industrial classification system that reflects the characteristics of the ocean and fisheries industry in South Korea. Therefore, this study aims to introduce the specialized classification system of the ocean and fisheries industry and, further intends to analyze industry trends using the survey data based on the classification system. For the past three years (2017-2019) 9,000 businesses were surveyed annually to estimate industry revenues, number of businesses and workers, annual labor costs, and business outlook. As a result, this study proposed the need for government support for the shipbuilding and offshore plant construction & repair industry which has great economic ripple effects, and the need to strengthen the labor supply chain of the fishery industries that are easily affected by external shocks

    Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells

    Get PDF
    Recently, the interplay between autophagy and apoptosis has become an important factor in chemotherapy for cancer treatment. Inhibition of autophagy may be an effective strategy to improve the treatment of chemo-resistant cancer by consistent exposure to chemotherapeutic drugs. However, no reports have clearly elucidated the underlying mechanisms. Therefore, in this study, we assessed whether salinomycin, a promising anticancer drug, induces apoptosis and elucidated potential antitumor mechanisms in chemo-resistant prostate cancer cells. Cell viability assay, Western blot, annexin V/propidium iodide assay, acridine orange (AO) staining, caspase-3 activity assay, reactive oxygen species (ROS) production, and mitochondrial membrane potential were assayed. Our data showed that salinomycin alters the sensitivity of prostate cancer cells to autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, enhanced the salinomycin-induced apoptosis. Notably, salinomycin decreased phosphorylated of AKT and phosphorylated mammalian target of rapamycin (mTOR) in prostate cancer cells. Pretreatment with LY294002, an autophagy and PI3K inhibitor, enhanced the salinomycin-induced apoptosis by decreasing the AKT and mTOR activities and suppressing autophagy. However, pretreatment with PD98059 and SB203580, an extracellular signal-regulated kinases (ERK), and p38 inhibitors, suppressed the salinomycin-induced autophagy by reversing the upregulation of ERK and p38. In addition, pretreatment with N-acetyl-L-cysteine (NAC), an antioxidant, inhibited salinomycin-induced autophagy by suppressing ROS production. Our results suggested that salinomycin induces apoptosis, which was related to ROS-mediated autophagy through regulation of the PI3K/AKT/mTOR and ERK/p38 MAPK signaling pathways

    Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC) for Eco-Friendly Paper

    Get PDF
    Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture

    Synergetic strengthening of layered steel sheet investigated using an in situ neutron diffraction tensile test

    Get PDF
    Synergetic strengthening induced by plastic strain incompatibility at the interface, and the resulting extra geometrically necessary dislocations (GNDs) generated during plastic deformation, were investigated to understand the origin of extra strength in heterogeneous structured (HS) materials. The mechanism of extra GND generation in twinning-induced plasticity (TWIP)-interstitial free (IF) steel layered sheet was quantitatively analyzed by conducting in situ neutron scattering tensile test. Load partitioning due to the different mechanical properties between the TWIP-steel core and IF-steel sheath at the TWIP/IF interface was observed during the in situ tensile testing. Because of the plastic strain incompatibility from load partitioning, extra GNDs are generated and saturate during tensile deformation. The extra GNDs can be correlated with the back-stress evolution of the HS materials, which contributes to the strength of layered materials. Because of the back-stress evolution caused by load partitioning, the strength of TWIP-IF layered steel is higher than the strength estimated by the rule-of-mixtures. This finding offers a mechanism by which extra GNDs are generated during load partitioning and shows how they contribute to the mechanical properties of HS materials.11Ysciescopu
    corecore