60 research outputs found

    Predictive Solution for Radiation Toxicity Based on Big Data

    Get PDF
    Radiotherapy is a treatment method using radiation for cancer treatment based on a patient treatment planning for each radiotherapy machine. At this time, the dose, volume, device setting information, complication, tumor control probability, etc. are considered as a single-patient treatment for each fraction during radiotherapy process. Thus, these filed-up big data for a long time and numerous patients’ cases are inevitably suitable to produce optimal treatment and minimize the radiation toxicity and complication. Thus, we are going to handle up prostate, lung, head, and neck cancer cases using machine learning algorithm in radiation oncology. And, the promising algorithms as the support vector machine, decision tree, and neural network, etc. will be introduced in machine learning. In conclusion, we explain a predictive solution of radiation toxicity based on the big data as treatment planning decision support system

    Prediction of Cancer Patient Outcomes Based on Artificial Intelligence

    Get PDF
    Knowledge-based outcome predictions are common before radiotherapy. Because there are various treatment techniques, numerous factors must be considered in predicting cancer patient outcomes. As expectations surrounding personalized radiotherapy using complex data have increased, studies on outcome predictions using artificial intelligence have also increased. Representative artificial intelligence techniques used to predict the outcomes of cancer patients in the field of radiation oncology include collecting and processing big data, text mining of clinical literature, and machine learning for implementing prediction models. Here, methods of data preparation and model construction to predict rates of survival and toxicity using artificial intelligence are described

    The ERK MAPK Pathway Is Essential for Skeletal Development and Homeostasis

    Get PDF
    Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that function as key signal transducers of a wide spectrum of extracellular stimuli, including growth factors and pro-inflammatory cytokines. Dysregulation of the extracellular signal-regulated kinase (ERK) MAPK pathway is associated with human skeletal abnormalities including Noonan syndrome, neurofibromatosis type 1, and cardiofaciocutaneous syndrome. Here, we demonstrate that ERK activation in osteoprogenitors is required for bone formation during skeletal development and homeostasis. Deletion of Mek1 and Mek2, kinases upstream of ERK MAPK, in osteoprogenitors (Mek1(Osx)Mek2(-/-)), resulted in severe osteopenia and cleidocranial dysplasia (CCD), similar to that seen in humans and mice with impaired RUNX2 function. Additionally, tamoxifen-induced deletion of Mek1 and Mek2 in osteoprogenitors in adult mice (Mek1(Osx-ERT)Mek2(-/-)) significantly reduced bone mass. Mechanistically, this corresponded to decreased activation of osteoblast master regulators, including RUNX2, ATF4, and beta-catenin. Finally, we identified potential regulators of osteoblast differentiation in the ERK MAPK pathway using unbiased phospho-mass spectrometry. These observations demonstrate essential roles of ERK activation in osteogenesis and bone formation

    Effect of a New Prokinetic Agent DA-9701 Formulated with Corydalis Tuber and Pharbitidis Semen on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Get PDF
    DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC50) values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol 1′-hydroxylation with an inhibition constant (Ki) value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol 1′-hydroxylation, with a Ki value of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC50 equivalent concentration (volume per dose index) value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate the in vivo extent of the observed in vitro interactions

    Aqueous Synthesis of CdTe Quantum Dot Using Dithiol-Functionalized Ionic Liquid

    Get PDF
    We report on an aqueous synthesis of cadmium telluride (CdTe) nanocrystals by using dithiol-functionalized ionic liquids (dTFILs). The dTFILs were designed to have dithiol and vinylimidazolium functional groups and used as a ligand molecule of CdTe quantum dot (QD) to utilize the bidendate chelate interaction afforded by the dithiol groups of dTFILs. The photoluminescence quantum yield of dTFIL-capped CdTe QDs reached up to ~40%, and their luminescent property was maintained for 8 weeks, suggesting an improved stability in water phase. This approach will provide a new synthetic route to the water soluble QDs

    Cellular and Tissue Selectivity of AAV Serotypes for Gene Delivery to Chondrocytes and Cartilage

    Get PDF
    Background: Despite several studies on the effect of adeno-associated virus (AAV)-based therapeutics on osteoarthritis (OA), information on the transduction efficiency and applicable profiles of different AAV serotypes to chondrocytes in hard cartilage tissue is still limited. Moreover, the recent discovery of additional AAV serotypes makes it necessary to screen for more suitable AAV serotypes for specific tissues. Here, we compared the transduction efficiencies of 14 conventional AAV serotypes in human chondrocytes, mouse OA models, and human cartilage explants obtained from OA patients. Methods: To compare the transduction efficiency of individual AAV serotypes, green fluorescent protein (GFP) expression was detected by fluorescence microscopy or western blotting. Likewise, to compare the transduction efficiencies of individual AAV serotypes in cartilage tissues, GFP expression was determined using fluorescence microscopy or immunohistochemistry, and GFP-positive cells were counted. Results: Only AAV2, 5, 6, and 6.2 exhibited substantial transduction efficiencies in both normal and OA chondrocytes. All AAV serotypes except AAV6 and rh43 could effectively transduce human bone marrow mesenchymal stem cells. In human and mouse OA cartilage tissues, AAV2, AAV5, AAV6.2, AAV8, and AAV rh39 showed excellent tissue specificity based on transduction efficiency. These results indicate the differences in transduction efficiencies of AAV serotypes between cellular and tissue models. Conclusions: Our findings indicate that AAV2 and AAV6.2 may be the best choices for AAV-mediated gene delivery into intra-articular cartilage tissue. These AAV vectors hold the potential to be of use in clinical applications to prevent OA progression if appropriate therapeutic genes are inserted into the vector
    corecore