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Chapter

Prediction of Cancer Patient
Outcomes Based on Artificial
Intelligence
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Abstract

Knowledge-based outcome predictions are common before radiotherapy.
Because there are various treatment techniques, numerous factors must be
considered in predicting cancer patient outcomes. As expectations surrounding
personalized radiotherapy using complex data have increased, studies on outcome
predictions using artificial intelligence have also increased. Representative artificial
intelligence techniques used to predict the outcomes of cancer patients in the field
of radiation oncology include collecting and processing big data, text mining of
clinical literature, and machine learning for implementing prediction models. Here,
methods of data preparation and model construction to predict rates of survival and
toxicity using artificial intelligence are described.

Keywords: big data, artificial intelligence, prediction, cancer patient outcomes,
radiation oncology

1. Introduction
1.1 Definitions of big data

There are numerous definitions of big data covering attributes from techno-
logical needs to key thresholds to social impacts [1]. One popular definition of big
data, proposed by Gartner, encompasses the “3Vs: volume, velocity, and variety”
[2]. This definition refers to the increasing size of standard datasets, the increasing
rate at which they are produced, and the increasing range of formats and represen-
tations employed. But there are few numerical quantifications in place to analyze
big data. A fourth V, veracity, was added by IBM in 2012 [3]. Veracity describes
questions of trust and uncertainty regarding data and results stemming from data.
De Mauro et al. proposed an alternative definition of big data, introducing a fifth V
(value): “Big data is the information asset characterized by such a high volume,
velocity, and variety as to require specific technology and analytical methods for
its transformation into value” (Figure 1) [1].
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Figure 1.
The 5Vs of big data [4].

1.2 Differences between statistical analyses and machine learning

Statistical analyses are traditionally conducted using a mathematical formula
based on a hypothesis, whereas machine learning is algorithm-based using data
without rule-based programming. Statistics aims to infer the relationship between
input and output and can explain the outcome of a probability distribution when
the hypothesis is satisfied. A predictive model using statistical analyses has high
explanatory power but low predictive power. Traditional statistical methods thus
depend on a hypothesis. In most cases, machine learning predicts by directly
modeling and learning from data, without hypothesis-based or rule-based
programming. Machine learning focuses on important features; it ignores noise and
outliers by extracting only important features from the data for the predictive
model (Figure 2).

1.3 Big data in healthcare

Medical big data comprises complex results from a diversity of diseases, treat-
ment methods, outcomes, data resources, analytical methods, and approaches for
collecting, processing, and interpreting data [5]. There are various sources of
medical big data, such as hospital information systems (HIS), electronic medical
records (EMR), order communication records (OCR), picture archiving and
communication systems (PACS), patient reports, biomarker data, genomic data,
prospective cohort studies, and large clinical trials [6, 7]. There are several distinc-
tive features of medical data that are different from data in other fields. Medical
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Figure 2.
The field of data science including statistics, big data, and artificial intelligence [8].

data are often difficult to access. Many investigators in the medical field are hesitant
to practice open data science for various reasons, including the risk of data misuse
by other parties. Medical data are often collected based on established protocols.
These protocols commonly include preprocessing to simplify raw data. Both the
acquisition and sharing of medical data require institutional approvals (e.g.,
approvals from an institutional review board), privacy protection for patients,
shared agreement over the meaning of certain data elements, and an overall tech-
nology infrastructure enabling data sharing (such as a cloud-based system).

1.4 Big data in radiation oncology

In the radiation oncology field, diagnostic and therapeutic data are acquired
throughout the course of treatment and during follow-up. Specific to radiation
oncology, heterogeneous and voluminous amounts of data must be evaluated. These
data exist in different formats across various information systems. Examples
include hospital, laboratory, and oncology information systems (HIS, LIS, OIS),
picture archiving and communication systems (PACS), and systems to record and
verify (R&V) [9]. As expectations for personalized radiotherapy using complex
data have increased, studies on outcome predictions using artificial intelligence
have also increased. Specifically, studies of decision support systems based on big
data have increased [10-12]. Several decision support systems have been developed
in radiation oncology. Decision support systems for treatment planning have inte-
grated imaging, dosimetry, biological, and other data in a quantitative manner to
provide specific clinical predictions [13]. For example, a treatment planning deci-
sion support system that predicts radiation toxicity based on big data now exists
[14]. Importantly, validation and standardization are crucial when developing
medical decision support systems [15, 16].
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2. Data preparation
2.1 Multi-institutional data collection

For prediction models using supervised learning, patient’s data can be obtained
by retrospectively analyzing the outcomes and prognoses of individual cancer
patients. Since there can be data collection biases within a single institution, multi-
institutional analyses are useful. Furthermore, data from one institution can be used
to verify data from another institution. Oncospace (http://oncospace.radonc.jhmi.
edu/) is a representative example of a multi-institutional big data platform in the
field of radiation oncology. It comprises a database and web-based analysis tools for
planning, data import, and outcome predictions [17]. Radiation oncology data shar-
ing has been positively affected by the Oncospace consortium model.

2.2 Literature-based data collection

Data from previously published sources can be applied to prediction models.
Representative databases for searching medical literature include PubMed (www.
ncbi.nlm.nih.gov./entrez/query.fcgi), ScienceDirect (www.sciencedirect.com),
Scirus (www.scirus.com/srsapp), ISI Web of Knowledge (http://www.isiwebof-
knowledge.com), and Google Scholar (http://scholar.google.com). It is important to
obtain as many relevant studies as possible, as loss of studies can lead to bias.

The PRISMA statement recommends that a full electronic search of at least one
major database be included [18]. Database searches can be augmented with manual
searches of relevant papers, books, abstracts, and conference proceedings. Cross-
checking references, capturing citations in review papers, and including communi-
cations from scientists working in a relevant field are important methods used to
ensure that a comprehensive search is conducted [19].

3. Definitions of cancer patient outcomes

In 1993, the Outcomes Working Group (OWG) of the American Society of
Clinical Oncology (ASCO) defined the outcomes of cancer treatment to be used
for technical assessment and the development of cancer treatment guidelines [20].
According to the OWG, patient outcomes (e.g., survival rate or quality of life)
should be prioritized over cancer outcomes (e.g., toxicity, response, or cost-
effectiveness). Since a single outcome is not indicative of the overall patient out-
come following cancer treatment, multiple outcomes should be considered [20].
In this chapter, we discuss three important outcomes to consider when choosing a
treatment plan: toxicity, response, and survival rate.

3.1 Toxicity

Toxicity (either acute or chronic) is vitally important, with chronic toxicity
being particularly critical in children [20]. The Radiation Therapy Oncology Group
(RTOG) distinguishes acute and late toxicity from the side effects that occur during
radiation therapy and provides guidelines for the clinical management of toxicity
graded for each critical organ. Toxicity can be scored using the Common Terminol-
ogy Criteria for Adverse Events (CTCAE). The CTCAE scoring system is a product
of the US National Cancer Institute (NCI) [21]. Toxicity is graded as mild (grade 1),
moderate (grade 2), severe (grade 3), or life-threatening (grade 4), with specific
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parameters for the organ system involved. Death (grade 5) is used to denote a
fatality occurring during treatment [22].

3.2 Response

A solid tumor response assessment usually consists of a bidimensional (World
Health Organization criteria, WHO) or unidimensional (response evaluation
criteria in solid tumors guidelines, RECIST) measurement of tumors before and
after chemotherapy [23, 24].

A treatment response can be grouped into four categories which are as follows:
a complete response (CR), with the disappearance of all target lesions; a partial
response (PR), with a decrease of greater than 30% of the target lesions; disease
progression (DP), with an increase of greater than 20% of the target lesions, the
appearance of new lesions, and/or the unequivocal progression of nontarget lesions;
and stable disease (SD), with changes in tumor size not otherwise qualifying as PR
or PD [23, 25].

3.3 Survival rate

The 5-year survival rate represents the percentage of patients living at least
5 years after a cancer is found. For example, the international 5-year survival rate
for patients with lung cancer varies from 5-16% [26].

4, Prediction models

The accurate prediction of a patient’s outcome before radiotherapy is an inter-
esting and challenging task (Figure 3) [15, 28-30]. Machine learning (ML) methods
have become popular with medical researchers. ML techniques can discover and
identify patterns and relationships between treatment methods and outcomes.
Using complex datasets, ML algorithms are increasingly able to predict outcomes
for a specific cancer type [16, 29, 31-34].

The artificial neural net (ANN) and support vector machine (SVM) classifiers
are among the most widely used ML algorithms related to cancer patient outcomes.
The ANN algorithm has been used for almost 30 years. The SVM tool constitutes a
more recent approach to predict cancer outcomes and is popular for its accurate
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Figure 3.
Workflow of a prediction model, from raw data to the prediction result [27].
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predictive performance. The most suitable algorithm choice for prediction depends on
various parameters, including the type of data collected, the size of the data samples,
the time frame for collection and analysis, and the type of results needed [29].

When using literature to collect data for prediction model implementation, text
mining is often needed to transform literature to structured data. A major part of
the text mining process involves the crucial stage of preprocessing the literature
(i.e., dealing with unstructured data). Preprocessing techniques such as text cate-
gorization and term extraction are necessary. The text mining process itself requires
the storage of intermediate representations, techniques to analyze intermediate
representations, clustering, trend analysis, association rules, and visualization of
results [35].

4.1 Toxicity prediction using clinical data

When treating cancer patients, the dual administration of chemotherapy and
radiotherapy can cause severe toxicity [36]. Several studies using ANN to predict
the toxicity of radiation therapy at various tumor sites have been conducted.
Among tumor sites, there is a high probability of radiation toxicity in the head and
neck. According to one study in 2002, they tested on clinical data and proved to be
able to predict which patients will tolerate a combined chemoradiotherapy and to
supply a potential predictive indicator for radiation toxicity. Clinical data were
derived from 63 consecutive cases. All patients admitted into the study received
induction chemotherapy for three cycles followed by concomitant
chemoradiotherapy to treat head and neck cancer. They used an interval arithmetic
perceptron (IAP) algorithm that consists of a neural network with a single layer of
weights. The prediction performance using 11 input variables is 76.19% of correctly
classified cases, whereas the whole network using 38 input variables allows only
53.97% of successes, confirming that reducing the input variables to the salient ones
do improve statistical performances [37].

4.2 Response prediction using medical images

To better predict tumor responses to chemotherapy, a modeling study using CT
and MR images was performed. In breast cancer patients, MR images generated
useful clinical markers. MR images of 68 cancer patients were obtained before
neoadjuvant chemotherapy, after which 25 patients were CR and 43 were NR. There
is no statistically significant difference of each of these image features between the
CR and NR case groups (p > 0.05). After applying ROC analysis on each of the 39
features, 10 features yielded AUC > 0.6 in classifying between the CR and NR case
groups. The artificial neural network yielded an AUC = 0.96 + 0.03, which is
significantly higher than AUC = 0.85 + 0.05 yielded using a simple feature fusion
method (p < 0.01). The overall accuracy of response prediction was 94% with a
sensitivity of 88% at a specificity of 98% [38].

4.3 Survival rate prediction using immunohistochemical data

In 2003, an ANN analysis proved to be more accurate than a statistical analysis
in predicting the survival rate of patients with non-small cell lung cancer (NSCLC).
In the study, a predictive model was implemented using data from 125 lung cancer
patients. The study used 17 input variables (including five immunohistochemical
parameters: p27 percentage, p27 intensity, p53, cyclin D1, and retinoblastoma) and
12 clinicopathological variables (including age, sex, smoking index, tumor size, p
factor, pT, pN, stage, and histology). The prediction accuracy of the NSCLC 5-year
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survival rate using ANN was 87%, whereas the prediction accuracy using a logistic
regression analysis was 78% [39].

4.4 Text mining-based toxicity prediction model

Prediction of radiation toxicity at the treatment planning stage of radiotherapy
can improve tumor control and quality of life. However, due to the lack of patient
data analyzed retrospectively in actual clinical practice, there is a limit to
establish accurate prediction models. Thus, we used semantic data mining method
to structure the meta-analysis literature related to radiation pneumonitis and
constructed a dataset for machine learning. The 160 peer-reviewed papers related to
radiation pneumonitis were structured through semantic data mining (Konan
Analytics 4, Konan Technology Inc., Republic of Korea). In a structured learning
dataset, the target variable was set to grade 1-5 pneumonitis graded according to the
National Cancer Institute Common Toxicity Criteria version 3.0. The predictor
variable was set to 10 factors (interstitial lung disease, chronic obstructive pulmo-
nary disease, pulmonary function, age, concurrent chemotherapy, tumor location,
mean lung dose, V15, V20, V30). Based on the target variable characteristics,
support vector regression algorithm was implemented using the scikit-learn open
source toolkit. The accuracy of the regression model was expressed in the form of
root-mean-square error (RMSE) comparing the difference between the predicted
value and the actual value. In order to evaluate the results of radiation pneumonitis
prediction using unstructured data, we compared structured data that retrospec-
tively analyzed 110 cases of lung cancer patients. Therefore, the semantic database
of 39,404 cases related to radiation pneumonitis was constructed through semantic
data mining. The results of the radiation pneumonitis prediction showed RMSE of
1.307 using a structured semantic database and RMSE of 1.056 using the retrospec-
tively analyzed lung cancer patient data. It was confirmed that there is no difference
between prediction model using unstructured data and structured data (RMSE cost
difference, 0.251).

5. Limitations

The main obstacle to widely applying Al in the radiation oncology field is the
lack of valid data. Only 2-3% of available data adequately capture a patient’s current
state of health and medical history. Suitable data are, nonetheless, included in
certain ongoing clinical trials.

Since no dataset is likely to include all the features needed for an Al analysis,
handling of missing data is needed to build a sufficient dataset for machine learning.
A researcher can compensate for missing data by interpolating from the surround-
ing values, filling gaps with average values, or applying new artificial intelligence
methods. The “curse of dimension” seen in machine learning with numerous fea-
tures may make it necessary to select input factors using techniques like principal
component analysis (PCA) or feature selection.

6. Conclusions

Due to the increasing size of datasets, the increasing rate at which they are
produced and the increasing range of formats employed, predictive analysis studies
using big data and artificial intelligence have also increased. In the radiation onco-
logy field, there are ongoing trials to implement Al for predictive analyses.



Artificial Intelligence - Scope and Limitations

Outcomes such as survival rate, tumor response, and radiation toxicity are impor-
tant to cancer patients and physicians alike. In some cases, ANN is superior to
conventional statistical analyses in predicting a cancer patient’s prognosis. Recently,
an ensemble model has emerged, combining the advantages of various ML algo-
rithms to make predictions. Although it is sometimes difficult to interpret the
processes and results obtained from artificial intelligence techniques, the current
research into explainable artificial intelligence (XAI) can help to provide insight
[40]. Given the lack of retrospectively analyzed data, there are limits to collecting
learning data of high quality. This limitation might be overcome by data mining the
clinical literature. In summary, the increased use of big data and complex variables
in medicine suggests that Al will become increasingly crucial in predicting cancer
patient outcomes.
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