929 research outputs found

    The Characteristics of Action Potentials in Primo Vessels and the Effects of Acetylcholine Injection to the Action Potentials

    Get PDF
    In a previous study, we found that Primo vessels generate different action potentials in smooth muscles, but this study compared the pulse shape to distinguish the two tissues. Thus, a more sophisticated extracellular experiment was performed in this study using an acetylcholine injection; we then observed changes in the amplitude, FWHM (full width at half maximum), and period to explore Primo vessel function. A third type of pulse was recorded for Primo vessels. We observed fast depolarizing and repolarizing phases for this pulse. Further, its FWHM was 30 ms between smooth muscles and neurons. Acetylcholine affected only the period. The amplitude and FWHM were consistent after injection. Primo-vessels generated action potentials at twice the frequency after injection. From the results, we speculate that Primo-vessels perform a role in transferring signals in a different manner, which may be relevant for acupuncture treatment

    The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae

    Get PDF
    Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyperaccumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and “omics” approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.Ministry of Science, ICT and Future Planning 2015M3A6A2065697Ministry of Oceans and Fisheries 2015018

    Mathematical Distinction in Action Potential between Primo-Vessels and Smooth Muscle

    Get PDF
    We studied the action potential of Primo-vessels in rats to determine the electrophysiological characteristics of these structures. We introduced a mathematical analysis method, a normalized Fourier transform that displays the sine and cosine components separately, to compare the action potentials of Primo-vessels with those for the smooth muscle. We found that Primo-vessels generated two types of action potential pulses that differed from those of smooth muscle: (1) Type I pulse had rapid depolarizing and repolarizing phases, and (2) Type II pulse had a rapid depolarizing phase and a gradually slowing repolarizing phase

    Effects of dodecacalcium heptaaluminate content on the setting time, compressive strength, alkalinity, and cytocompatibility of tricalcium silicate cement

    Get PDF
    Objective: This study aimed to investigate the effects of dodecacalcium hepta-aluminate (C12A7) content on some physicochemical properties and cytocompatibility of tricalcium silicate (C3S) cement using human dental pulp cells (hDPCs). Material and Methods: High purity C3S cement was manufactured by a solid phase method. C12A7 was mixed with the cement in proportions of 0, 5, 8, and 10 wt% (C12A7-0, -5, -8, and -10, respectively). Physicochemical properties including initial setting time, compressive strength, and alkalinity were evaluated. Cytocompatibility was assessed with cell viability tests and cell number counts. Statistical analysis was performed by using one-way analysis of variance (ANOVA) and Tukey’s test (p<0.05). Results: The initial setting time of C3S-based cement was shorter in the presence of C12A7 (p<0.05). After 1 day, C12A7-5 showed significantly higher compressive strength than the other groups (p<0.05). After 7 days, the compressive strength of C12A7-5 was similar to that of C12A7-0, whereas other groups showed strength lower than C12A7-0. The pH values of all tested groups showed no significant differences after 1 day (p>0.05). The C12A7-5 group showed similar cell viability to the C12A7-0 group (p>0.05), while the other experimental groups showed lower values compared to C12A7-0 group (p<0.05). The number of cells grown on the C12A7-5 specimen was higher than that on C12A7-8 and -10 (p<0.05). Conclusions: The addition of C12A7 to C3S cement at a proportion of 5% resulted in rapid initial setting time and higher compressive strength with no adverse effects on cytocompatibility
    • 

    corecore