5 research outputs found

    An integer programming approach to the Hospitals/Residents problem with ties

    Get PDF
    The classical Hospitals/Residents problem (HR) models the assignment of junior doctors to hospitals based on their preferences over one another. In an instance of this problem, a stable matching M is sought which ensures that no blocking pair can exist in which a resident r and hospital h can improve relative to M by becoming assigned to each other. Such a situation is undesirable as it could naturally lead to r and h forming a private arrangement outside of the matching. The original HR model assumes that preference lists are strictly ordered. However in practice, this may be an unreasonable assumption: an agent may find two or more agents equally acceptable, giving rise to ties in its preference list. We thus obtain the Hospitals/Residents problem with Ties (HRT). In such an instance, stable matchings may have different sizes and MAX HRT, the problem of finding a maximum cardinality stable matching, is NP-hard. In this paper we describe an Integer Programming (IP) model for MAX HRT. We also provide some details on the implementation of the model. Finally we present results obtained from an empirical evaluation of the IP model based on real-world and randomly generated problem instances

    Efficient algorithms for optimal matching problems under preferences

    Get PDF
    In this thesis we consider efficient algorithms for matching problems involving preferences, i.e., problems where agents may be required to list other agents that they find acceptable in order of preference. In particular we mainly study the Stable Marriage problem (SM), the Hospitals / Residents problem (HR) and the Student / Project Allocation problem (SPA), and some of their variants. In some of these problems the aim is to find a stable matching which is one that admits no blocking pair. A blocking pair with respect to a matching is a pair of agents that prefer to be matched to each other than their assigned partners in the matching if any. We present an Integer Programming (IP) model for the Hospitals / Residents problem with Ties (HRT) and use it to find a maximum cardinality stable matching. We also present results from an empirical evaluation of our model which show it to be scalable with respect to real-world HRT instance sizes. Motivated by the observation that not all blocking pairs that exist in theory will lead to a matching being undermined in practice, we investigate a relaxed stability criterion called social stability where only pairs of agents with a social relationship have the ability to undermine a matching. This stability concept is studied in instances of the Stable Marriage problem with Incomplete lists (smi) and in instances of hr. We show that, in the smi and hr contexts, socially stable matchings can be of varying sizes and the problem of finding a maximum socially stable matching (max smiss and max hrss respectively) is NP-hard though approximable within 3/2. Furthermore we give polynomial time algorithms for three special cases of the problem arising from restrictions on the social network graph and the lengths of agents’ preference lists. We also consider other optimality criteria with respect to social stability and establish inapproximability bounds for the problems of finding an egalitarian, minimum regret and sex equal socially stable matching in the sm context. We extend our study of social stability by considering other variants and restrictions of max smiss and max hrss. We present NP-hardness results for max smiss even under certain restrictions on the degree and structure of the social network graph as well as the presence of master lists. Other NP-hardness results presented relate to the problem of determining whether a given man-woman pair belongs to a socially stable matching and the problem of determining whether a given man (or woman) is part of at least one socially stable matching. We also consider the Stable Roommates problem with Incomplete lists under Social Stability (a non-bipartite generalisation of smi under social stability). We observe that the problem of finding a maximum socially stable matching in this context is also NP-hard. We present efficient algorithms for three special cases of the problem arising from restrictions on the social network graph and the lengths of agents’ preference lists. These are the cases where (i) there exists a constant number of acquainted pairs (ii) or a constant number of unacquainted pairs or (iii) each preference list is of length at most 2. We also present algorithmic results for finding matchings in the spa context that are optimal with respect to profile, which is the vector whose ith component is the number of students assigned to their ith-choice project. We present an efficient algorithm for finding a greedy maximum matching in the spa context — this is a maximum matching whose profile is lexicographically maximum. We then show how to adapt this algorithm to find a generous maximum matching — this is a matching whose reverse profile is lexicographically minimum. We demonstrate how this approach can allow additional constraints, such as lecturer lower quotas, to be handled flexibly. We also present results of empirical evaluations carried out on both real world and randomly generated datasets. These results demonstrate the scalability of our algorithms as well as some interesting properties of these profile-based optimality criteria. Practical applications of spa motivate the investigation of certain special cases of the problem. For instance, it is often desired that the workload on lecturers is evenly distributed (i.e. load balanced). We enforce this by either adding lower quota constraints on the lecturers (which leads to the potential for infeasible problem instances) or adding a load balancing optimisation criterion. We present efficient algorithms in both cases. Another consideration is the fact that certain projects may require a minimum number of students to become viable. This can be handled by enforcing lower quota constraints on the projects (which also leads to the possibility of infeasible problem instances). A technique of handling this infeasibility is the idea of closing projects that do not meet their lower quotas (i.e. leaving such project completely unassigned). We show that the problem of finding a maximum matching subject to project lower quotas where projects can be closed is NP-hard even under severe restrictions on preference lists lengths and project upper and lower quotas. To offset this hardness, we present polynomial time heuristics that find large feasible matchings in practice. We also present ip models for the spa variants discussed and show results obtained from an empirical evaluation carried out on both real and randomly generated datasets. These results show that our algorithms and heuristics are scalable and provide good matchings with respect to profile-based optimalit

    Profile-based optimal matchings in the student-project allocation problem

    No full text
    In the Student/Project Allocation problem (spa) we seek to assign students to individual or group projects offered by lecturers. Students provide a list of projects they find acceptable in order of preference. Each student can be assigned to at most one project and there are constraints on the maximum number of students that can be assigned to each project and lecturer. We seek matchings of students to projects that are optimal with respect to profile, which is a vector whose rth component indicates how many students have their rth-choice project. We present an efficient algorithm for finding agreedy maximum matching in the spa context – this is a maximum matching whose profile is lexicographically maximum. We then show how to adapt this algorithm to find a generous maximum matching – this is a matching whose reverse profile is lexicographically minimum. Our algorithms involve finding optimal flows in networks. We demonstrate how this approach can allow for additional constraints, such as lecturer lower quotas, to be handled flexibly
    corecore