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Abstract

The classical Hospitals/Residents problem (HR) models the assignment of junior
doctors to hospitals based on their preferences over one another. In an instance of this
problem, a stable matching M is sought which ensures that no blocking pair can exist
in which a resident r and hospital h can improve relative to M by becoming assigned
to each other. Such a situation is undesirable as it could naturally lead to r and h
forming a private arrangement outside of the matching.

The original HR model assumes that preference lists are strictly ordered. However
in practice, this may be an unreasonable assumption: an agent may find two or more
agents equally acceptable, giving rise to ties in its preference list. We thus obtain the
Hospitals/Residents problem with Ties (HRT). In such an instance, stable matchings
may have different sizes and MAX HRT, the problem of finding a maximum cardinality
stable matching, is NP-hard.

In this paper we describe an Integer Programming (IP) model for MAX HRT. We
also provide some details on the implementation of the model. Finally we present
results obtained from an empirical evaluation of the IP model based on real-world and
randomly generated problem instances.

1 Introduction

The Hospital Residents Problem (HR) has applications in a number of centralised match-
ing schemes which seek to match graduating medical students (residents) to hospital
positions. Examples of such schemes include the National Resident Matching Program
(NRMP) in the US [10] and the Scottish Foundation Allocation Scheme (SFAS), which
ran until recently in Scotland. The challenges presented by these and other applications
have motivated research in the area of algorithms for matching problems.

Formally an instance I of HR involves a set R = {r1, r2, ..., rn1} of residents and
H = {h1, h2, ..., hn2} of hospitals. Each resident ri ∈ R ranks a subset of H in strict order
of preference with each hospital hj ∈ H ranking a subset of R, consisting of those residents
who ranked hj , in strict order of preference. Each hospital hj also has a capacity cj ∈ Z

+

indicating the maximum number of residents that can be assigned to it. A pair (ri, hj)
is called an acceptable pair if hj appears in ri’s preference list and ri on hj ’s preference
list. A matching M is a set of acceptable pairs such that each resident is assigned to at
most one hospital and the number of residents assigned to each hospital does not exceed
its capacity. A resident ri is unmatched in M if no acceptable pair in M contains ri. We
denote the hospital assigned to resident ri in M as M(ri) (if ri is unmatched in M then
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M(ri) is undefined) and the set of residents assigned to hospital hj in M as M(hj). A
hospital hj is under-subscribed in M if |M(hj)| < cj . An acceptable pair (ri, hj) can block
a matching M or forms a blocking pair with respect to M if ri is either unmatched or
prefers hj to M(ri) and hj is either under-subscribed or prefers ri to at least one resident
in M(hj). A matching M is said to be stable if there exists no blocking pair with respect
to M .

We consider a generalisation of HR which occurs when the preference lists of the
residents and hospitals are allowed to contain ties, thus forming the Hospital/Residents
Problem with Ties (HRT). In an HRT instance a resident (hospital respectively) is in-
different between all hospitals (residents respectively) in the same tie on its preference
list. In this context various definitions of stability exists. We consider weak stability [2] in
which a pair (ri, hj) can block a matching M if ri is either unmatched or strictly prefers
hj to M(ri) and hj is either under-subscribed or strictly prefers ri to at least one resident
in M(hj). A matching M is said to be weakly stable if there exists no blocking pairs with
respect to M . Henceforth we will refer to a weakly stable matching as simply a stable
matching.

Every instance of the HRT problem admits at least one stable matching. This can be
obtained by breaking the ties in both sets of preference lists in an arbitrary manner, thus
giving rise to a HR instance which can then be solved using the Gale-Shapley algorithm for
HR [1]. The resulting stable matching is then stable in the original HR instance. However,
in general, the order in which the ties are broken yields stable matchings of varying sizes
[7] and the problem of finding a maximum weakly stable matching given an HRT instance
(MAX HRT) is known to be NP-hard [7]. Various approximation algorithms for MAX
HRT can be found in the literature [8, 5] with the best current algorithm achieving a
performance guarantee of 3/2.

Due to the NP-hardness of MAX HRT and the need to maximize the cardinality of
stable matchings in practical applications, Integer Programming (IP) can be used to solve
MAX HRT instances to optimality. This paper presents a new IP model for MAX HRT
(Section 2). in Section 3 we provide some details on the implementation of the model.
Finally Section 4 summarises some of the results obtained by evaluating the model against
real-world and randomly generated problem instances. Proofs and more detailed empirical
results can be found in [6].

2 An IP model for MAX HRT

In this section we describe an IP model for MAX HRT which is a non-trivial extension
of an earlier IP model for a 1-1 restriction of MAX HRT due to Podhradskỳ [9]. Let
I be an instance of HRT consisting of a set R = {r1, r2, ..., rn1} of residents and H =
{h1, h2, ..., hn2} of hospitals. We denote the binary variable xi,j (1 ≤ i ≤ n1, 1 ≤ j ≤ n2)
to represent an acceptable pair in I formed by resident ri and hospital hj . Variable xi,j
will indicate whether ri is matched to hj in a solution or not: if xi,j = 1 in a given solution
J then ri is matched to hj in M (the matching obtained from J), else ri is not matched
to hj in M . We define rank(ri, hj), the rank of hj on ri’s preference list to be k + 1
where k is the number of hospitals that ri strictly prefers to hj . An analogous definition
for rank(hj , ri) holds. Obviously for HRT instances agents in the same tie have the same
rank. We define rank(ri, hj) = rank(hj , ri) = ∞ for an unacceptable pair (ri, hj). With
respect to a pair (ri, hj), we define the set Ti,j = {rp ∈ R : rank(hj , rp) ≤ rank(hj , ri)}
and Si,j = {hq ∈ H : rank(ri, hq) ≤ rank(ri, hj)}. We also define the set P (ri) to be the
set of hospitals that ri finds acceptable and P (hj) to be the set of residents that hj finds
acceptable. Figure 1 shows the resulting model. Constraint 1 ensures that each resident
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max

n1∑
i=1

∑
hj∈P (ri)

xi,j

subject to

1.
∑

hj∈P (ri)

xi,j ≤ 1 (1 ≤ i ≤ n1)

2.
∑

ri∈P (hj)

xi,j ≤ cj (1 ≤ j ≤ n2)

3. cj

⎛
⎝1−

∑
hq∈Si,j

xi,q

⎞
⎠−

∑
rp∈Ti,j

xp,j ≤ 0 (1 ≤ i ≤ n1, hj ∈ P (ri))

xi,j ∈ {0, 1}

Figure 1: model1: A HRT IP model

is matched to at most one hospital and Constraint 2 ensures that each hospital does not
exceed its capacity. Finally Constraint 3 ensures that the matching is stable by ruling out
the existence of any blocking pair.

Theorem 1. Given a HRT instance I modeled as an IP using model1, a feasible solution
to model1 produces a weakly stable matching in I. Conversely a weakly stable matching in
I corresponds to a feasible solution to model1.

3 Implementing the model

In this section we describe some techniques used to reduce the size of the HRT model gen-
erated and improve the performance of the IP solver. Techniques were described in [3] for
removing acceptable pairs that cannot be part of any stable matching from HRT instances
with ties on one side of the preference lists only. The hospitals-offer and residents-apply al-
gorithms described identify pairs that cannot be involved in any stable matching, nor form
a blocking pair with respect to any stable matching, and remove them from the instance.
This produces a reduced HRT instance that would yield fewer variables and constraints
when modelled as an IP thus speeding up the optimisation process. The original instance
and the reduced instance have the same set of stable matchings.

A number of steps were taken to improve the optimisation performance of the models.
These include placing a lower bound on the objective function and providing an initial so-
lution to the CPLEX solver. Both can be obtained by executing any of the approximation
algorithms [3] on the HRT instance (the 3/2-approximation algorithm for HRT with ties
on one side only due to Király [4] was chosen).

4 Empirical evaluations

An empirical evaluation of the IP model was carried out. Large numbers of random
instances of HRT were generated by varying certain parameters relating to the construction
of the instance and passed on to the CPLEX IP solver. Data from past SFAS matching
runs were also modelled and solved. This section discusses the methodology used and
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some of the results obtained. Experiments were carried out on a Linux machine with 8
Intel(R) Xeon(R) CPUs at 2.5GHz and 32GB RAM.

Although the theoretical model has been proven to be correct, it is still important
to verify the correctness of the implementation. The system was tested to ensure a high
degree of confidence in the results obtained. The correctness of the pre-processing steps
and the IP solution were evaluated by generating multiple instances (100,000) of various
sizes (with up to 400 residents) and testing the stability and size of the resulting matching
against both the original and the trimmed problem instance. For all the instances tested,
the solver produced optimal stable matchings.

Random HRT problem instances were generated. The instances consist of n1 residents,
n2 hospitals and C posts where n1, n2 and C can be varied. The hospital posts were
randomly distributed amongst the hospitals. Other properties of the generated instance
that can be varied include the lengths of residents’ preference lists as well as a measure of
the density td of ties present in the preference lists. The tie density td (0 ≤ td ≤ 1) of the
preference lists is the probability that some agent is tied to the agent next to it in a given
preference list. At td = 1 each preference lists would be contained a single tie while at
td = 0 no tie would exist in the preference lists of all agents thus reducing the problem to
an HR instance. We define the size of the instance as the number of residents n1 present.

Since ties cause the size of stable matchings to vary, an obvious question to investigate
is how the variation in tie density affects the runtime of the IP model and the size of
the maximum stable matchings found. These values were measured for multiple instances
of MAX HRT while varying the tie density td of hospitals’ preference lists. This was
done for increasing sizes (n1 = 200, 250, 300) of the problem instance with the residents’
preference list being kept strictly ordered at 5 hospitals each. A total of 10,000 instances
were randomly generated for each tie density value (starting at td = 0% to td = 100% with
an interval of 5%) and instance size. For each instance C = n1 and n2 = �0.07× nR�.

To avoid extreme outliers skewing the mean measures, we define what we regard as
a reasonable solution time (300 seconds) and abandon search if the solver exceeds this
cut-off time. In most cases this cut-off was not exceeded: in [6] we show the percentage
of instances that were solved before the cut-off was exceeded for the values of n1 and td
considered (the lowest of which was 97.76%).

From Figures 2 and 3 we see that the mean and median runtime remain significantly
low for instances with td < 60% but then gradually increase until they reach their peaks
(in the region of 80% − 90%) before falling as the tie density approaches 100%. From a
theoretical perspective, it is known that the problem is polynomially solvable when the tie
density is at both 0% and 100% and it is easy to see how the IP solver will find these cases
trivial. As the tie density increases the number of stable matchings that the instance
is likely to admit also increases, explaining the observed increase in the runtime. The
hospitals-offer and residents-apply algorithms used to trim the instance also play their
part in this trend with limited trimming done for higher tie densities.

We also looked to answer the question of how scalable the IP model is by increasing n1

and measuring the mean and median time taken to solve multiple random instances. The
tie densities of the hospitals’ preference lists were set to 0.85 on all instances. The instance
size n1 was increased by 50 starting at n1 = 100. A total of 100 instances for each instance
size was generated. The number of hospitals n2 in each instance was set to �0.07 × n1�.
No cut-off was set for this experiment. Figure 4 shows how the mean computational time
increases with n1. We assume the increasingly sharp difference between the mean and
median is due to the presence of outliers due to exceptionally difficult instances.

Another question worth asking is whether the IP model can handle instance sizes found
in real-world applications. In [3], various approximation algorithms and heuristics were
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implemented and tested on real datasets from the SFAS matching scheme for 2006, 2007
and 2008 where the residents’ preferences are strictly ordered with ties existing on the
hospitals’ preference lists. With the IP model, it is now possible to trim the instances
using the techniques mentioned in Section 3, generate an optimal solution and compare
the results obtained with those reported in [3]. Results from these tests showed that, while
some algorithms did marginally better than others, all the algorithms developed generated
relatively large stable matchings with respect to the optimal values. Table 5 shows this
comparison. Let M ′ denote the largest stable matching found over all the algorithms
tested in [3].

Figure 2: Mean runtime vs td Figure 3: Median runtime vs td

Figure 4: Mean and median runtime vs n1

year n1 n2 td time (s) |M | |M ′| from [3]

2006 759 53 92% 92.96 758 754

2007 781 53 76% 21.78 746 744

2008 748 52 81% 75.50 709 705

Figure 5: SFAS IP Results
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[9] A. Podhradskỳ. Stable marriage problem algorithms, Master’s thesis, Masaryk Univer-
sity, Faculty of Informatics, 2011. Available from http://is.muni.cz/th/172646/

fi_m

[10] National Resident Matching Program website. Available at http://www.nrmp.org.

6


