32 research outputs found

    A single extra copy of Down syndrome critical region 1–4 results in impaired hepatic glucose homeostasis

    No full text
    Objectives: During fasting, hepatic gluconeogenesis is induced to maintain energy homeostasis. Moreover, abnormal dysregulation of hepatic glucose production is commonly observed in type 2 diabetes. However, the signaling components controlling hepatic glucose production to maintain normal glucose levels are not fully understood. Here, we examined the physiological role of Down syndrome critical region 1–4 (DSCR1-4), an endogenous calcineurin signaling inhibitor in the liver that mediates metabolic adaptation to fasting. Methods: We assessed the effect of cyclosporine A, an inhibitor of calcineurin signaling on gluconeogenic gene expression in primary hepatocytes. DSCR1-4 expression was examined in diet- and genetically-induced mouse models of obesity. We also investigated the metabolic phenotype of a single extra copy of DSCR1-4 in transgenic mice and how DSCR1-4 regulates glucose homeostasis in the liver. Results: Treatment with cyclosporin A increased hepatic glucose production and gluconeogenic gene expression. The expression of DSCR1-4 was induced by refeeding and overexpressed in obese mouse livers. Moreover, transgenic mice with a single extra copy of DSCR1-4 exhibited pyruvate intolerance and impaired glucose homeostasis. Mechanistically, DSCR1-4 overexpression increased phosphorylation of the cAMP response element-binding protein, which led to elevated expression levels of gluconeogenic genes and, thus, enhanced hepatic glucose production during fasting. Conclusion: A single extra copy of DSCR1-4 results in dysregulated hepatic glucose homeostasis and pyruvate intolerance. Our findings suggest that nutrient-sensitive DSCR1-4 is a novel target for controlling hepatic gluconeogenesis in diabetes. Keywords: Hepatic glucose homeostasis, DSCR1-4, Diabetes, Calcineuri

    Treatment outcomes in metastatic and localized high-grade salivary gland cancer: high chance of cure with surgery and post-operative radiation in T1–2 N0 high-grade salivary gland cancer

    No full text
    Abstract Background High-grade salivary gland cancer is a distinct clinical entity that has aggressive disease progression and early systemic spread. However, because of the rarity of the disease, the clinical outcomes, prognostic factors and clinical decision on the optimal treatments have not been fully understood. Methods In this study, we retrospectively analyzed the clinical data of 124 patients with high-grade salivary gland cancers and performed multivariate survival analyses to evaluate the clinico-pathological factors affecting the treatment outcomes. Results The 5-year disease-specific survival was 63.4% in patients with high-grade salivary gland cancers. Among the clinico-pathological factors, presence of lymph node metastasis (hazard ratio 5.63, 95% confidence interval 2.64–12.03, P < 0.001) and distant metastasis (hazard ratio 4.59, 95% confidence interval 2.10–10.04, P < 0.001) at diagnosis were the most potent unfavorable prognostic factors. Importantly, patients with early-stage disease (T1–2N0M0) showed apparently a relatively excellent prognosis (93.2% 5-year disease-specific survival); meanwhile N (+) and M1 status at diagnosis resulted in dismal outcomes (44.6 and 21.1% 5-year disease-specific survival, respectively). On comparing surgery alone as a treatment modality, surgery plus postoperative radiation significantly benefited the patients, but the difference between adjuvant radiation and chemoradiation was not found to be significant. Pathological subtypes of high-grade salivary gland cancers were not significantly associated with prognosis. Conclusions Despite of an overall unfavorable prognosis in high-grade salivary gland cancer, patients with early-stage disease are expected to have excellent prognosis (over 90% survival rates) with surgery plus adjuvant radiation, which may implicate the patients’ consultation, therapeutic decision making, and the need for early detection of the disease

    Cytotoxic Constituents from the Sclerotia of Poria cocos against Human Lung Adenocarcinoma Cells by Inducing Mitochondrial Apoptosis

    No full text
    Previous studies have revealed the antitumor potential of Poria cocos Wolf against a broad spectrum of cancers. However, the biological activity of P. cocos against lung cancer, which is known as the leading cause of cancer mortality worldwide, and its underlying chemical and molecular basis, remain to be investigated. We aimed to evaluate the in vitro cytotoxicity of P. cocos toward human lung adenocarcinoma cells with different p53 statuses, to identify the bioactive constituents of P. cocos, and explicate the molecular mechanisms underlying the cytotoxicity of these constituents in human lung adenocarcinoma cells. An EtOH extract of the sclerotia of P. cocos exhibited cytotoxicity toward four human lung cancer cell lines: A549, H1264, H1299, and Calu-6, regardless of their p53 status. Chemical investigation of the extract resulted in the isolation of two triterpenoids, dehydroeburicoic acid monoacetate (1) and acetyl eburicoic acid (4); a sterol, 9,11-dehydroergosterol peroxide (2); and a diterpenoid, dehydroabietic acid (3). All of the isolated compounds were cytotoxic to the lung adenocarcinoma cell lines, exhibiting IC50 values ranging from 63.6 &mu;M to 171.0 &mu;M at 48 h of treatment. The cytotoxicity of the extract and the isolated compounds were found to be mediated by apoptosis, and accompanied by elevated Bax expression and/or Bcl-2 phosphorylation along with caspase-3 activation. Our data demonstrate that the sclerotium of P. cocos and its four bioactive constituents (1&ndash;4) exert cytotoxicity against human lung adenocarcinoma cells, regardless of their p53 status, by inducing apoptosis associated with mitochondrial perturbation, and proposing the potential to employ P. cocos in the treatment of lung cancer

    CDO, an Hh-Coreceptor, Mediates Lung Cancer Cell Proliferation and Tumorigenicity through Hedgehog Signaling

    No full text
    <div><p>Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.</p></div
    corecore