7,076 research outputs found
Pattern formation and selection in quasi-static fracture
Fracture in quasi-statically driven systems is studied by means of a discrete
spring-block model. Developed from close comparison with desiccation
experiments, it describes crack formation induced by friction on a substrate.
The model produces cellular, hierarchical patterns of cracks, characterized by
a mean fragment size linear in the layer thickness, in agreement with
experiments. The selection of a stationary fragment size is explained by
exploiting the correlations prior to cracking. A scaling behavior associated
with the thickness and substrate coupling, derived and confirmed by
simulations, suggests why patterns have similar morphology despite their
disparity in scales.Comment: 4 pages, RevTeX, two-column, 5 PS figures include
Recommended from our members
Wire bond vibration of forward pixel tracking detector of CMS
Wire bonds of the Forward Pixel (FPix) tracking detectors are oriented in the direction that maximizes Lorentz Forces relative to the 4 Tesla field of the Compact Muon Solenoid (CMS) Detector's magnet. The CMS Experiment is under construction at the Large Hadron Collider at CERN, Geneva, Switzerland. We were concerned about Lorentz Force oscillating the wires at their fundamental frequencies and possibly fracturing or breaking them at their heels, as happened with the CDF wire bonds. This paper reports a study to understand what conditions break such bonds
Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+
We report the first observation of the Cabibbo-suppressed charm baryon decay
Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were
accumulated using the SELEX spectrometer during the 1996-1997 fixed target run
at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of
the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ ->
X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) =
0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +-
0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let
First Observation of the Doubly Charmed Baryon Xi_cc^+
We observe a signal for the doubly charmed baryon Xi_cc^+ in the charged
decay mode Xi_cc^+ --> Lambda_c^+ K- pi+ in data from SELEX, the charm
hadro-production experiment at Fermilab. We observe an excess of 15.9 events
over an expected background of 6.1 +/- 0.5 events, a statistical significance
of 6.3sigma. The observed mass of this state is (3519 +/- 1) MeV/c^2. The
Gaussian mass width of this state is 3MeV/c^2, consistent with resolution; its
lifetime is less than 33fsec at 90% confidence.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
First observation of a narrow charm-strange meson DsJ(2632) -> Ds eta and D0 K+
We report the first observation of a charm-strange meson DsJ(2632) at a mass
of 2632.6+/-1.6 MeV/c^2 in data from SELEX, the charm hadro-production
experiment E781 at Fermilab. This state is seen in two decay modes, Ds eta and
D0 K+. In the Ds eta decay mode we observe an excess of 49.3 events with a
significance of 7.2sigma at a mass of 2635.9+/-2.9 MeV/c^2. There is a
corresponding peak of 14 events with a significance of 5.3sigma at 2631.5+/-1.9
MeV/c^2 in the decay mode D0 K+. The decay width of this state is <17 MeV/c^2
at 90% confidence level. The relative branching ratio Gamma(D0K+)/Gamma(Dseta)
is 0.16+/-0.06. The mechanism which keeps this state narrow is unclear. Its
decay pattern is also unusual, being dominated by the Ds eta decay mode.Comment: 5 pages, 3 included eps figures. v2 as accepted for publication by
PR
First Measurement of pi e -> pi e gamma Pion Virtual Compton Scattering
Pion Virtual Compton Scattering (VCS) via the reaction pi e --> pi e gamma
was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c pi-
beam incident on target atomic electrons, detecting the incident pi- and the
final state pi-, electron and gamma. Theoretical predictions based on chiral
perturbation theory are incorporated into a Monte Carlo simulation of the
experiment and are compared to the data. The number of reconstructed events (9)
and their distribution with respect to the kinematic variables (for the
kinematic region studied) are in reasonable accord with the predictions. The
corresponding pi- VCS experimental cross section is sigma=38.8+-13 nb, in
agreement with the theoretical expectation sigma=34.7 nb.Comment: 10 pages, 12 figures, 4 tables, 25 references, SELEX home page is
http://fn781a.fnal.gov/, revised July 21, 2002 in response to journal referee
Comment
Amplified Squeezed States: Analyzing Loss and Phase Noise
Phase-sensitive amplification of squeezed states is a technique to mitigate
high detection loss, e.g. at 2-micrometre wavelengths. Our analytical model of
amplified squeezed states expands on the effect of phase noise and derives two
practical parameters: the effective measurable squeezing and the effective
detection efficiency. A case study including realistic parameters demonstrates
the benefit of phase-sensitive amplification. We identified the phase noise in
the optical parametric amplifier (OPA) minimally affects the squeezing level,
enabling increased gain of the OPA. This scheme is compatible with proposed
gravitational-wave detectors and consistent with applications in quantum
systems that are degraded by output coupling loss in optical waveguides.Comment: 9 pages, 6 figures, 1 table. Submitted to Physical Review
A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay
We report a new measurement of electron antineutrino disappearance using the
fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight
antineutrino detectors were installed in the summer of 2012. Including the 404
days of data collected from October 2012 to November 2013 resulted in a total
exposure of 6.910 GW-ton-days, a 3.6 times increase over
our previous results. Improvements in energy calibration limited variations
between detectors to 0.2%. Removal of six Am-C radioactive
calibration sources reduced the background by a factor of two for the detectors
in the experimental hall furthest from the reactors. Direct prediction of the
antineutrino signal in the far detectors based on the measurements in the near
detectors explicitly minimized the dependence of the measurement on models of
reactor antineutrino emission. The uncertainties in our estimates of
and were halved as a result of these
improvements. Analysis of the relative antineutrino rates and energy spectra
between detectors gave and eV in the three-neutrino
framework.Comment: Updated to match final published versio
A side-by-side comparison of Daya Bay antineutrino detectors
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely
the neutrino mixing angle with a sensitivity better than 0.01 in
the parameter sin at the 90% confidence level. To achieve this
goal, the collaboration will build eight functionally identical antineutrino
detectors. The first two detectors have been constructed, installed and
commissioned in Experimental Hall 1, with steady data-taking beginning
September 23, 2011. A comparison of the data collected over the subsequent
three months indicates that the detectors are functionally identical, and that
detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
- …