13,443 research outputs found

    A 100-MIPS GaAs asynchronous microprocessor

    Get PDF
    The authors describe how they ported an asynchronous microprocessor previously implemented in CMOS to gallium arsenide, using a technology-independent asynchronous design technique. They introduce new circuits including a sense-amplifier, a completion detection circuit, and a general circuit structure for operators specified by production rules. The authors used and tested these circuits in a variety of designs

    Phase transition in a spring-block model of surface fracture

    Full text link
    A simple and robust spring-block model obeying threshold dynamics is introduced to study surface fracture of an overlayer subject to stress induced by adhesion to a substrate. We find a novel phase transition in the crack morphology and fragment-size statistics when the strain and the substrate coupling are varied. Across the transition, the cracks display in succession short-range, power-law and long-range correlations. The study of stress release prior to cracking yields useful information on the cracking process.Comment: RevTeX, 4 pages, 4 Postscript figures included using epsfi

    Large-scale Bias and Efficient Generation of Initial Conditions for Non-Local Primordial Non-Gaussianity

    Full text link
    We study the scale-dependence of halo bias in generic (non-local) primordial non-Gaussian (PNG) initial conditions of the type motivated by inflation, parametrized by an arbitrary quadratic kernel. We first show how to generate non-local PNG initial conditions with minimal overhead compared to local PNG models for a general class of primordial bispectra that can be written as linear combinations of separable templates. We run cosmological simulations for the local, and non-local equilateral and orthogonal models and present results on the scale-dependence of halo bias. We also derive a general formula for the Fourier-space bias using the peak-background split (PBS) in the context of the excursion set approach to halos and discuss the difference and similarities with the known corresponding result from local bias models. Our PBS bias formula generalizes previous results in the literature to include non-Markovian effects and non-universality of the mass function and are in better agreement with measurements in numerical simulations than previous results for a variety of halo masses, redshifts and halo definitions. We also derive for the first time quadratic bias results for arbitrary non-local PNG, and show that non-linear bias loops give small corrections at large-scales. The resulting well-behaved perturbation theory paves the way to constrain non-local PNG from measurements of the power spectrum and bispectrum in galaxy redshift surveys.Comment: 43 pages, 10 figures. v2: references added. 2LPT parallel code for generating non-local PNG initial conditions available at http://cosmo.nyu.edu/roman/2LP

    Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO_3)

    Get PDF
    Secondary organic aerosol (SOA) formation from the reaction of isoprene with nitrate radicals (NO3) is investigated in the Caltech indoor chambers. Experiments are performed in the dark and under dry conditions (RH<10%) using N2O5 as a source of NO3 radicals. For an initial isoprene concentration of 18.4 to 101.6 ppb, the SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) ranges from 4.3% to 23.8%. By examining the time evolutions of gas-phase intermediate products and aerosol volume in real time, we are able to constrain the chemistry that leads to the formation of low-volatility products. Although the formation of ROOR from the reaction of two peroxy radicals (RO2) has generally been considered as a minor channel, based on the gas-phase and aerosol-phase data it appears that RO2+RO2 reaction (self reaction or cross-reaction) in the gas phase yielding ROOR products is a dominant SOA formation pathway. A wide array of organic nitrates and peroxides are identified in the aerosol formed and mechanisms for SOA formation are proposed. Using a uniform SOA yield of 10% (corresponding to Mo≅10 μg m−3), it is estimated that ~2 to 3 Tg yr−1 of SOA results from isoprene + NO3. The extent to which the results from this study can be applied to conditions in the atmosphere depends on the fate of peroxy radicals (i.e. the relative importance of RO2+RO2 versus RO2+NO3 reactions) in the nighttime troposphere

    Application of Multimodal Neuromonitoring in Posterior Inferior Cerebellar Artery Aneurysm Clippings: Review of Two Cases.

    Get PDF
    Neurophysiological monitoring is advocated for the prevention of neurological sequelae secondary to the clipping of an aneurysm involved in posterior circulation. Unfortunately, there is a paucity in the literature regarding what neurophysiological monitoring techniques are best employed. The authors here present two cases where multimodal neuromonitoring techniques were used during the clippings of two posterior inferior cerebellar artery (PICA) aneurysms. There is increased neurologic morbidity associated with PICA aneurysm clippings, as a number of eloquent structures live in close proximity to the PICA. The application of a multimodal neuromonitoring paradigm may reduce a poor neurological outcome

    Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes

    Get PDF
    Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well) may be more efficient in polluted air

    An algorithm for series expansions based on hierarchical rate equations

    Full text link
    We propose a computational method to obtain series expansions in powers of time for general dynamical systems described by a set of hierarchical rate equations. The method is generally applicable to problems in both equilibrium and nonequilibrium statistical mechanics such as random sequential adsorption, diffusion-reaction dynamics, and Ising dynamics. New result of random sequential adsorption of dimers on a square lattice is presented.Comment: LaTeX, 9 pages including 1 figur

    Flexural strength and ductility of reinforced concrete beams

    Get PDF
    corecore