45 research outputs found

    Identification of Subsets of Enteroaggregative Escherichia coli Associated with Diarrheal Disease among Under 5 Years of Age Children from Rural Gambia.

    Get PDF
    Enteroaggregative Escherichia coli (EAEC) cause acute and persistent diarrhea, mostly in children worldwide. Outbreaks of diarrhea caused by EAEC have been described, including a large outbreak caused by a Shiga toxin expressing strain. This study investigated the association of EAEC virulence factors with diarrhea in children less than 5 years. We characterized 428 EAEC strains isolated from stool samples obtained from moderate-to-severe diarrhea cases (157) and healthy controls (217) children aged 0-59 months recruited over 3 years as part of the Global Enteric Multicenter Study (GEMS) in The Gambia. Four sets of multiplex polymerase chain reaction were applied to detect 21 EAEC-virulence genes from confirmed EAEC strains that target pCVD432 (aatA) and AAIC (aaiC). In addition, Kirby-Bauer disc diffusion antimicrobial susceptibility testing was performed on 88 EAEC strains following Clinical Laboratory Standard Institute guidelines. We observed that the plasmid-encoded enterotoxin [odds ratio (OR): 6.9, 95% confidence interval (CI): 2.06-29.20, P 12 months). Our data suggest that some EAEC-virulent factors have age-specific associations with moderate-to-severe diarrhea in infants. Furthermore, our study showed that 85% and 72% of EAEC strains tested were resistant to sulphamethoxazole-trimethoprim and ampicillin, respectively. Sulphamethoxazole-trimethoprim and ampicillin are among the first-line antibiotics used for the treatment of diarrhea in The Gambia

    Global distribution of invasive serotype 35D streptococcus pneumoniae isolates following introduction of 13-valent pneumococcal conjugate vaccine

    Get PDF
    A newly recognized pneumococcal serotype 35D, which differs from the 35B polysaccharide in structure and serology by not binding to factor serum 35a, was recently reported. The genetic basis for this distinctive serology is due to the presence of an inactivating mutation in wciG, which encodes an O-acetyltransferase responsible for O-acetylation of a galactofuranose. Here, we assessed the genomic data of a worldwide pneumococcal collection to identify serotype 35D isolates and understand their geographical distribution, genetic background and invasiveness potential. Of 21,980 pneumococcal isolates, 444 were originally typed as serotype 35B by PneumoCaT. Analysis of wciGrevealed 23 isolates from carriage (n=4) and disease (n=19) with partial or complete loss-of-funtion mutations, including mutations resulting in pre-mature stop codons (n=22) and an in-frame mutation (n=1). These were selected for further analysis. The putative 35D isolates were geographically widespread and 65.2% (15/23) of them was recovered after PCV13 introduction. Compared with serotype 35B, putative serotype 35D isolates have higher invasive disease potentials based on odds ratio (OR) (11.58; 95% CI, 1.42-94.19 vs 0.61; 95% CI, 0.40-0.92) and a higher prevalence of macrolide resistance mediated by mefA (26.1% vs 7.6%, p=0.009). Using Quellung, 50% (10/20) of viable isolates were serotype 35D, 25% (5/20) serotype 35B, and 25% (5/20) a mixture of 35B/35D. The discrepancy between phenotype and genotype requires further investigation. These findings illustrated a global distribution of an invasive serotype 35D among young children post-PCV13 introduction and underlined the invasive potential conferred by the loss of O-acetylation in the pneumococcal capsule

    Etiology of Bacterial Meningitis Among Children <5 Years Old in Côte d'Ivoire: Findings of Hospital-based Surveillance Before and After Pneumococcal Conjugate Vaccine Introduction.

    Get PDF
    BACKGROUND: Bacterial meningitis remains a major disease affecting children in Côte d'Ivoire. Thus, with support from the World Health Organization (WHO), Côte d'Ivoire has implemented pediatric bacterial meningitis (PBM) surveillance at 2 sentinel hospitals in Abidjan, targeting the main causes of PBM: Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and Neisseria meningitidis (meningococcus). Herein we describe the epidemiological characteristics of PBM observed in Côte d'Ivoire during 2010-2016. METHODS: Cerebrospinal fluid (CSF) was collected from children aged <5 years admitted to the Abobo General Hospital or University Hospital Center Yopougon with suspected meningitis. Microbiology and polymerase chain reaction (PCR) techniques were used to detect the presence of pathogens in CSF. Where possible, serotyping/grouping was performed to determine the specific causative agents. RESULTS: Overall, 2762 cases of suspected meningitis were reported, with CSF from 39.2% (1083/2762) of patients analyzed at the WHO regional reference laboratory in The Gambia. In total, 82 (3.0% [82/2762]) CSF samples were positive for bacterial meningitis. Pneumococcus was the main pathogen responsible for PBM, accounting for 69.5% (52/82) of positive cases. Pneumococcal conjugate vaccine serotypes 5, 18C, 19F, and 6A/B were identified post-vaccine introduction. Emergence of H. influenzae nontypeable meningitis was observed after H. influenzae type b vaccine introduction. CONCLUSIONS: Despite widespread use and high coverage of conjugate vaccines, pneumococcal vaccine serotypes and H. influenzae type b remain associated with bacterial meningitis among children aged <5 years in Côte d'Ivoire. This reinforces the need for enhanced surveillance for vaccine-preventable diseases to determine the prevalence of bacterial meningitis and vaccine impact across the country

    Changes in the Molecular Epidemiology of Pediatric Bacterial Meningitis in Senegal After Pneumococcal Conjugate Vaccine Introduction.

    Get PDF
    BACKGROUND: Bacterial meningitis is a major cause of mortality among children under 5 years of age. Senegal is part of World Health Organization-coordinated sentinel site surveillance for pediatric bacterial meningitis surveillance. We conducted this analysis to describe the epidemiology and etiology of bacterial meningitis among children less than 5 years in Senegal from 2010 and to 2016. METHODS: Children who met the inclusion criteria for suspected meningitis at the Centre Hospitalier National d'Enfants Albert Royer, Senegal, from 2010 to 2016 were included. Cerebrospinal fluid specimens were collected from suspected cases examined by routine bacteriology and molecular assays. Serotyping, antimicrobial susceptibility testing, and whole-genome sequencing were performed. RESULTS: A total of 1013 children were admitted with suspected meningitis during the surveillance period. Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus accounted for 66% (76/115), 25% (29/115), and 9% (10/115) of all confirmed cases, respectively. Most of the suspected cases (63%; 639/1013) and laboratory-confirmed (57%; 66/115) cases occurred during the first year of life. Pneumococcal meningitis case fatality rate was 6-fold higher than that of meningococcal meningitis (28% vs 5%). The predominant pneumococcal lineage causing meningitis was sequence type 618 (n = 7), commonly found among serotype 1 isolates. An ST 2174 lineage that included serotypes 19A and 23F was resistant to trimethoprim-sulfamethoxazole. CONCLUSIONS: There has been a decline in pneumococcal meningitis post-pneumococcal conjugate vaccine introduction in Senegal. However, disease caused by pathogens covered by vaccines in widespread use still persists. There is need for continued effective monitoring of vaccine-preventable meningitis

    Hospital-based Surveillance Provides Insights Into the Etiology of Pediatric Bacterial Meningitis in Yaoundé, Cameroon, in the Post-Vaccine Era.

    Get PDF
    BACKGROUND:Meningitis is endemic to regions of Cameroon outside the meningitis belt including the capital city, Yaoundé. Through surveillance, we studied the etiology and molecular epidemiology of pediatric bacterial meningitis in Yaoundé from 2010 to 2016. METHODS:Lumbar puncture was performed on 5958 suspected meningitis cases; 765 specimens were further tested by culture, latex agglutination, and/or polymerase chain reaction (PCR). Serotyping/grouping, antimicrobial susceptibility testing, and/or whole genome sequencing were performed where applicable. RESULTS:The leading pathogens detected among the 126 confirmed cases were Streptococcus pneumoniae (93 [73.8%]), Haemophilus influenzae (18 [14.3%]), and Neisseria meningitidis (15 [11.9%]). We identified more vaccine serotypes (19 [61%]) than nonvaccine serotypes (12 [39%]); however, in the latter years non-pneumococcal conjugate vaccine serotypes were more common. Whole genome data on 29 S. pneumoniae isolates identified related strains (<30 single-nucleotide polymorphism difference). All but 1 of the genomes harbored a resistance genotype to at least 1 antibiotic, and vaccine serotypes harbored more resistance genes than nonvaccine serotypes (P < .05). Of 9 cases of H. influenzae, 8 were type b (Hib) and 1 was type f. However, the cases of Hib were either in unvaccinated individuals or children who had not yet received all 3 doses. We were unable to serogroup the N. meningitidis cases by PCR. CONCLUSIONS:Streptococcus pneumoniae remains a leading cause of pediatric bacterial meningitis, and nonvaccine serotypes may play a bigger role in disease etiology in the postvaccine era. There is evidence of Hib disease among children in Cameroon, which warrants further investigation

    Etiology of Pediatric Bacterial Meningitis Pre- and Post-PCV13 Introduction Among Children Under 5 Years Old in Lomé, Togo.

    Get PDF
    BACKGROUND: Pediatric bacterial meningitis (PBM) causes severe morbidity and mortality within Togo. Thus, as a member of the World Health Organization coordinated Invasive Bacterial Vaccine Preventable Diseases network, Togo conducts surveillance targeting Streptococcus pneumoniae (pneumococcus), Neisseria meningitidis (meningococcus), and Haemophilus influenzae, at a sentinel hospital within the capital city, Lomé, in the southernmost Maritime region. METHODS: Cerebrospinal fluid was collected from children <5 years with suspected PBM admitted to the Sylvanus Olympio Teaching Hospital. Phenotypic detection of pneumococcus, meningococcus, and H. influenzae was confirmed through microbiological techniques. Samples were shipped to the Regional Reference Laboratory to corroborate results by species-specific polymerase chain reaction. RESULTS: Overall, 3644 suspected PBM cases were reported, and 98 cases (2.7%: 98/3644) were confirmed bacterial meningitis. Pneumococcus was responsible for most infections (67.3%: 66/98), followed by H. influenzae (23.5%: 23/98) and meningococcus (9.2%: 9/98). The number of pneumococcal meningitis cases decreased by 88.1% (52/59) postvaccine introduction with 59 cases from July 2010 to June 2014 and 7 cases from July 2014 to June 2016. However, 5 cases caused by nonvaccine serotypes were observed. Fewer PBM cases caused by vaccine serotypes were observed in infants <1 year compared to children 2-5 years. CONCLUSIONS: Routine surveillance showed that PCV13 vaccination is effective in preventing pneumococcal meningitis among children <5 years of age in the Maritime region. This complements the MenAfriVac vaccination against meningococcal serogroup A to prevent meningitis outbreaks in the northern region of Togo. Continued surveillance is vital for estimating the prevalence of PBM, determining vaccine impact, and anticipating epidemics in Togo

    Novel Multilocus Sequence Typing and Global Sequence Clustering Schemes for Characterizing the Population Diversity of Streptococcus mitis

    Get PDF
    Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission

    Declines in Pediatric Bacterial Meningitis in the Republic of Benin Following Introduction of Pneumococcal Conjugate Vaccine: Epidemiological and Etiological Findings, 2011-2016.

    Get PDF
    BACKGROUND: Pediatric bacterial meningitis (PBM) remains an important cause of disease in children in Africa. We describe findings from sentinel site bacterial meningitis surveillance in children <5 years of age in the Republic of Benin, 2011-2016. METHODS: Cerebrospinal fluid (CSF) was collected from children admitted to Parakou, Natitingou, and Tanguieta sentinel hospitals with suspected meningitis. Identification of Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and Neisseria meningitidis (meningococcus) was performed by rapid diagnostic tests, microbiological culture, and/or polymerase chain reaction; where possible, serotyping/grouping was performed. RESULTS: A total of 10 919 suspected cases of meningitis were admitted to the sentinel hospitals. Most patients were 0-11 months old (4863 [44.5%]) and there were 542 (5.0%) in-hospital deaths. Overall, 4168 CSF samples were screened for pathogens and a total of 194 (4.7%) PBM cases were confirmed, predominantly caused by pneumococcus (98 [50.5%]). Following pneumococcal conjugate vaccine (PCV) introduction in 2011, annual suspected meningitis cases and deaths (case fatality rate) progressively declined from 2534 to 1359 and from 164 (6.5%) to 14 (1.0%) in 2012 and 2016, respectively (P < .001). Additionally, there was a gradual decline in the proportion of meningitis cases caused by pneumococcus, from 77.3% (17/22) in 2011 to 32.4% (11/34) in 2016 (odds ratio, 7.11 [95% confidence interval, 2.08-24.30]). Haemophilus influenzae meningitis fluctuated over the surveillance period and was the predominant pathogen (16/34 [47.1%]) by 2016. CONCLUSIONS: The observed decrease in pneumococcal meningitis after PCV introduction may be indicative of changing patterns of PBM etiology in Benin. Maintaining vigilant and effective surveillance is critical for understanding these changes and their wider public health implications

    Etiology of Pediatric Meningitis in West Africa Using Molecular Methods in the Era of Conjugate Vaccines against Pneumococcus, Meningococcus, and Haemophilus influenzae Type b.

    Get PDF
    Despite the implementation of effective conjugate vaccines against the three main bacterial pathogens that cause meningitis, Streptococcus pneumoniae, Haemophilus influenzae type b (Hib), and Neisseria meningitidis serogroup A, the burden of meningitis in West Africa remains high. The relative importance of other bacterial, viral, and parasitic pathogens in central nervous system infections is poorly characterized. Cerebrospinal fluid (CSF) specimens were collected from children younger than 5 years with suspected meningitis, presenting at pediatric teaching hospitals across West Africa in five countries including Senegal, Ghana, Togo, Nigeria, and Niger. Cerebrospinal fluid specimens were initially tested using bacteriologic culture and a triplex real-time polymerase chain reaction (PCR) assay for N. meningitidis, S. pneumoniae, and H. influenzae used in routine meningitis surveillance. A custom TaqMan Array Card (TAC) assay was later used to detect 35 pathogens including 15 bacteria, 17 viruses, one fungus, and two protozoans. Among 711 CSF specimens tested, the pathogen positivity rates were 2% and 20% by the triplex real-time PCR (three pathogens) and TAC (35 pathogens), respectively. TAC detected 10 bacterial pathogens, eight viral pathogens, and Plasmodium. Overall, Escherichia coli was the most prevalent (4.8%), followed by S. pneumoniae (3.5%) and Plasmodium (3.5%). Multiple pathogens were detected in 4.4% of the specimens. Children with human immunodeficiency virus (HIV) and Plasmodium detected in CSF had high mortality. Among 220 neonates, 17% had at least one pathogen detected, dominated by gram-negative bacteria. The meningitis TAC enhanced the detection of pathogens in children with meningitis and may be useful for case-based meningitis surveillance
    corecore