10 research outputs found
Regulation of Granulocyte and Macrophage Populations of Murine Bone Marrow Cells by G-CSF and CD137 Protein
BACKGROUND: Granulocytes and monocytes/macrophages differentiate from common myeloid progenitor cells. Granulocyte colony-stimulating factor (G-CSF) and CD137 (4-1BB, TNFRSF9) are growth and differentiation factors that induce granulocyte and macrophage survival and differentiation, respectively. This study describes the influence of G-CSF and recombinant CD137-Fc protein on myelopoiesis. METHODOLOGY/PRINCIPAL FINDINGS: Both, G-CSF and CD137 protein support proliferation and survival of murine bone marrow cells. G-CSF enhances granulocyte numbers while CD137 protein enhances macrophage numbers. Both growth factors together give rise to more cells than each factor alone. Titration of G-CSF and CD137 protein dose-dependently changes the granulocyte/macrophage ratio in bone marrow cells. Both factors individually induce proliferation of hematopoietic progenitor cells (lin-, c-kit+) and differentiation to granulocytes and macrophages, respectively. The combination of G-CSF and CD137 protein further increases proliferation, and results in a higher number of macrophages than CD137 protein alone, and a lower number of granulocytes than G-CSF alone demonstrating that CD137 protein-induced monocytic differentiation is dominant over G-CSF-induced granulocytic differentiation. CD137 protein induces monocytic differentiation even in early hematopoietic progenitor cells, the common myeloid progenitors and the granulocyte macrophage progenitors. CONCLUSIONS/SIGNIFICANCE: This study confirms earlier data on the regulation of myelopoiesis by CD137 receptor - ligand interaction, and extends them by demonstrating the restriction of this growth promoting influence to the monocytic lineage
Species Difference of CD137 Ligand Signaling in Human and Murine Monocytes
BACKGROUND: Stimulation of CD137 ligand on human monocytes has been shown to induce DC differentiation, and these CD137L-DCs are more potent than classical DCs, in stimulating T cell responses in vitro. To allow an in vivo evaluation of the potency of CD137L-DCs in murine models we aimed at generating murine CD137L-DCs. METHODOLOGY/PRINCIPAL FINDINGS: When stimulated through CD137 ligand murine monocytes responded just as human monocytes with an increased adherence, morphological changes, proliferation and an increase in viable cell numbers. But CD137 ligand signaling did not induce expression of inflammatory cytokines and costimulatory molecules in murine monocytes and these cells had no T cell stimulatory activity. Murine monocytes did not differentiate to inflammatory DCs upon CD137 ligand signaling. Furthermore, while CD137 ligand signaling induces maturation of human immature classical DCs it failed to do so with murine immature classical DCs. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that both human and murine monocytes become activated by CD137 ligand signaling but only human and not murine monocytes differentiate to inflammatory DCs
Biphasic activity of cd137 ligand-stimulated monocytes on T cell apoptosis and proliferation
10.1189/jlb.1010569Journal of Leukocyte Biology895707-720JLBI
Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype
10.1038/srep29712Scientific Reports62971
Suberoylanilide hydroxamic acid: A potential epigenetic therapeutic agent for lung fibrosis?
10.1183/09031936.00084808European Respiratory Journal341145-15