64 research outputs found

    Effects of Oral Glucose Load on Endothelial Function and on Insulin and Glucose Fluctuations in Healthy Individuals

    Get PDF
    Background/aims. Postprandial hyperglycemia, an independent risk factor for cardiovascular disease, is accompanied by endothelial dysfunction. We studied the effect of oral glucose load on insulin and glucose fluctuations, and on postprandial endothelial function in healthy individuals in order to better understand and cope with the postprandial state in insulin resistant individuals. Methods. We assessed post-oral glucose load endothelial function (flow mediated dilation), plasma insulin, and blood glucose in 9 healthy subjects. Results. The largest increases in delta FMD values (fasting FMD value subtracted from postprandial FMD value) occurred at 3 hours after both glucose or placebo load, respectively: 4.80 ± 1.41 (P = .009) and 2.34 ± 1.47 (P = .15). Glucose and insulin concentrations achieved maximum peaks at one hour post-glucose load. Conclusion. Oral glucose load does not induce endothelial dysfunction in healthy individuals with mean insulin and glucose values of 5.6 mmol/L and 27.2 mmol/L, respectively, 2 hours after glucose load

    PKCα and PKCδ Regulate ADAM17-Mediated Ectodomain Shedding of Heparin Binding-EGF through Separate Pathways

    Get PDF
    Epidermal growth factor receptor (EGFR) signalling is initiated by the release of EGFR-ligands from membrane-anchored precursors, a process termed ectodomain shedding. This proteolytic event, mainly executed by A Disintegrin And Metalloproteases (ADAMs), is regulated by a number of signal transduction pathways, most notably those involving protein kinase C (PKC). However, the molecular mechanisms of PKC-dependent ectodomain shedding of EGFR-ligands, including the involvement of specific PKC isoforms and possible functional redundancy, are poorly understood. To address this issue, we employed a cell-based system of PMA-induced PKC activation coupled with shedding of heparin binding (HB)-EGF. In agreement with previous studies, we demonstrated that PMA triggers a rapid ADAM17-mediated release of HB-EGF. However, PMA-treatment also results in a protease-independent loss of cell surface HB-EGF. We identified PKCα as the key participant in the activation of ADAM17 and suggest that it acts in parallel with a pathway linking PKCδ and ERK activity. While PKCα specifically regulated PMA-induced shedding, PKCδ and ERK influenced both constitutive and inducible shedding by apparently affecting the level of HB-EGF on the cell surface. Together, these findings indicate the existence of multiple modes of regulation controlling EGFR-ligand availability and subsequent EGFR signal transduction

    ADAM17-mediated EGFR ligand shedding directs macrophage-promoted cancer cell invasion

    Get PDF
    Macrophages in the tumor microenvironment have a substantial impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of A Disintegrin and Metalloproteinase (ADAM) proteases, which are key mediators of cell-cell signaling, to the expression of protumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several protumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified heparin-binding EGF (HB-EGF) and amphiregulin, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-Seq and ELISA experiments revealed that ADAM17-dependent HB-EGF ligand release induced the expression and secretion of CXCL chemokines in macrophages, which in turn stimulated cancer cell invasion. In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.</p

    Effect of local TGF-β1 and IGF-1 release on implant fixation: comparison with hydroxyapatite coating: A paired study in dogs

    Get PDF
    Background and purpose Hydroxyapatite (HA) coating stimulates the osseointegration of cementless orthopedic implants. Recently, locally released osteogenic growth factors have also been shown experimentally to stimulate osseointegration so that bone fills gaps around orthopedic implants. Here, we have compared the effect of local release of TGF-β 1 and IGF-1 with that of hydroxyapatite coating on implant fixation

    Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling

    Get PDF
    Thrombospondin-2 (TSP2) and osteonectin/BM-40/SPARC are matricellular proteins that are highly expressed by bone cells. Mice deficient in either of these proteins show phenotypic alterations in the skeleton, and these phenotypes are most pronounced under conditions of altered bone remodeling. For example, TSP2-null mice have higher cortical bone volume and are resistant to bone loss associated with ovariectomy, whereas SPARC-null mice have decreased trabecular bone volume and fail to demonstrate an increase in bone mineral density in response to a bone-anabolic parathyroid hormone treatment regimen. In vitro, marrow stromal cell (MSC) osteoprogenitors from TSP2-null mice have increased proliferation but delayed formation of mineralized matrix. Similarly, in cultures of SPARC-null MSCs, osteoblastic differentiation and mineralized matrix formation are decreased. Overall, both TSP2 and SPARC positively influence osteoblastic differentiation. Intriguingly, both of these matricellular proteins appear to impact MSC fate through mechanisms that could involve the Notch signaling system. This review provides an overview of the role of TSP2 and SPARC in regulating bone structure, function, and remodeling, as determined by both in vitro and in vivo studies
    corecore