8 research outputs found

    Visualization of the State of Radiological Contamination of Food Products

    Full text link
    The object of research is the measurement, assessment, visualization and control of the effects of radiation exposure on life, public health, environmental protection and safety of national economic facilities, taking into account the risk of man-made disasters. One of the biggest problems is the need to develop scientific methods for the study of integrated assessments of the impact of man-made pressures on the environment and humans. And also in the creation of specialized systems for collecting, storing, processing and visualizing information using modern GIS (geographic information systems) technologies. This allows to analyze multidimensional data using their display while preserving the structural features of the information.Comprehensive assessment of the impact of man-made pollution is used, which is a necessary condition for metrological support for in-depth study of the structure of the system, as the unity of components and connections.As a result of this work, a specialized system for analyzing the data obtained when measuring samples of food products for compliance with the standards for a particular product has been formed. The basis of this system is the development of a database of food monitoring in the Cherkasy region (Ukraine), the structure of which includes a central bank and 5 specialized units. Examples are given of the calculation of comparative assessments of the state of areas of the region, including the radiation component.Measurement and obtained control over a complex situation with simultaneous consideration of a large number of heterogeneous parameters are carried out. This is due to the fact that the proposed method complements the well-known methods of mathematical modeling of radiological contamination, directly affect the quality of life of the population, and has several features. In particular, the development of a software environment for the construction and visualization in the form of thematic maps of the correlation between radiological contamination and the incidence of the population of the region. This ensures the possibility of obtaining an assessment of the risk degree to public health and making informed decisions to minimize it

    Removal of Temperature Drift of Zero of Piezoelectric Accelerometer

    Full text link
    The object of research is the dependence of the results of measuring vibrational acceleration by a piezoelectric accelerometer on the influence of ambient temperature. The indicated dependence is a change in the constant level in the measured signal. This is caused by the generation of an additional charge by the piezoelectric element of the accelerometer in the absence of impact on it from the side of the measurement object. The specified additional charge is generated under the influence of changes in the temperature of the medium on the structure of the sensitive element. This leads to an increase in the error of the measurement result. The larger the range of fluctuations in temperature and the rate of change in the temperature of the medium over time, the greater the effect on the measurement results. Since changes in temperature over time compared with the frequency of measured vibrations are much slower processes and their influence on the measurement result is constant in the entire dynamic range of the accelerometer, they represent an additive component of the error in these measurements.During the study, in order to prevent the temperature influence of the medium on the measurement process, methods for its elimination are considered and solutions for improving the piezoelectric accelerometer by introducing a compensation element in its design are proposed. In order to reduce the influence of temperature fluctuations of the medium on the measurement results, a controlled piezoelectric element operating on the inverse piezoelectric effect along the polarization axis is used as a compensation element. The resulting solution is easily implemented from a technical point of view, since the compensation element and the sensitive element are made of the same material and have the same coefficient of thermal expansion. The compensation element is controlled by an automatic regulation system that works on the principle of deviation regulation.Thanks to the method proposed in this work, it is possible to increase the accuracy of measurements performed using piezoelectric accelerometers and to expand their scope in relation to the requirements for the ambient temperature

    Development of Methods of Processing Sensor Signal

    Full text link
    The object of research is the process of processing the signal of the primary converter by a certain method. In carrying out measurements on the primary converter of the measuring system, in addition to the action parameter measurement, there are many secondary influences. One of them is the change in the temperature of the environment. This leads to the appearance in the measured signal of such a component as an additional constant level. It is caused by the generation of the primary converter in the absence of influence on the object of measurement of additional charge, potential. That is, in the absence of action on the side of the measurement parameter there is a shift in the zero level of the signal of the primary converter. Thus the fluctuations of the temperature of the medium result in the appearance of a non-informative component in the measurement signal. That is, we get an increase in the error of the measurement result. The principle of the method used to process the signal of the primary converter is presented on the example of measuring the vibration with a piezoelectric accelerometer. The proposed method of processing the signal of measurement allows to distinguish a constant component of the complex signal of measurement. This is achieved by supplying a measuring signal to two parallel channels, in one of which the signal is delayed by phase for half of the period relative to the second, followed by processing on the adder. Since the signal from the primary converter has a wide frequency band, it is necessary to ensure the accuracy of the delay in the phase. This is achieved by reconfiguring a constant time phase filter phase. The reconfiguration is carried out using a frequency-voltage converter that tracks the frequency of the measured signal. Since changes in temperature over time compared with the frequency of measured vibrations are much slower, then the inaccuracy of the scheme is practically absent. That is, the inaccuracy of determining the constant component in the complex signal will be determined by the difference in the amplitudes of adjacent half-lives. The obtained results allow to assert that this method can be used both for correction of the primary transformer itself (by influence on its transfer function), and for correction of the results of measurements in general

    Analysis of the Methods of Measurement of the Cylindrical Gear Involute

    Full text link
    The object of research in this work is the process of measuring the involute of a cylindrical gear by using coordinate measuring machines based on new physical principles, equipment and methods. To date, the metrological assurance of measuring the parameters of gears has been based on tools for the tooth and other equipment. All of them have a limited range of measurement parameters, different accuracy and nomenclature of measured values. Many of them are morally obsolete, not automated, do not have access to computer tools and do not provide the modern level of accuracy, information content and speed. By virtue of this, metrological support of gears is increasingly used in practice, and measurements of the geometric parameters of their involute surfaces are found on coordinate measuring machines. A significant advantage is the fact that several geometrical parameters of the surface of a gear can be measured on coordinate measuring machines in one installation. At the same time, the developed software allows to estimate the measurement errors and give them a graphic display. The paper reviews the reference base in the field of involumetry, which requires its creation on the basis of a detailed analysis of new measurement principles, the need to justify their accuracy, expansion of the range and range of measured parameters. Consequently, the production of new modifications of Ukrainian measuring instruments, based on new principles of control and control and measuring instruments of leading foreign manufacturers in the field of involumetry, is promising. The complex of works on the creation of a system for ensuring the uniformity of measurement of geometrical parameters of gears is also considered. This requires a review, systematization and development of methods and means of metrological assurance. A mathematical description of the gear involute curve is proposed by the method of triangulation of multiply connected domains and the description of a geometric model of an involute using a trend. Recommendations on the application of the method of describing cylindrical gears with an involute profile are given. The proposed method allows to improve the measurement accuracy on coordinate measuring machines

    Development of A Method for Improving the Accuracy of Measurement of Linear Measures of 3D Models Via Scanning

    Full text link
    The object of research is to refine the linear sizes of the obtained 3D models via scanning, and reducing the numbers of errors when obtaining the model. For now, there is no accuracy method for transferring the actual sizes of an object to a 3D model. One of the most problematic places in the existing methods of transferring sizes from the object to the model is the error in the placement of dimensional markers due to inaccuracy, or poor quality of the received surface via scanning. A model of the instrument complex is used to implement an improved method of 3D scanning, based on the photogrammetric method. The advanced technology of construction and measurement of 3D models on the basis of photos on the principle of stereo pairs in combination with image projection is based on a combination of existing scanning methods. As well as the introduction of new functionalities, such as maintaining the actual sizes of an object, its textures, color and light characteristics, as well as improving the accuracy of linear sizes. As a result of the use of a standard, reference projections, and a new method of comparing photographs to build a 3D model, a 60 % increase in the accuracy of linear dimensions was achieved. This is due to the fact that the proposed new combined method incorporates all the existing most important aspects of scanning. And also has a number of features, such as the definition of boundary surfaces, automatic sizing, detection, and processing of glass and mirror surfaces. Due to this, this method eliminates the main disadvantages of the usual photogrammetric method – inaccuracies in the surface quality of the models, and inaccuracies in the transfer of linear dimensions. It is estimated that the combined method will allow to transfer the real size of simple objects in 3D with an accuracy of 99.97 % of the actual size of the object. It will also improve the quality of complex surfaces (boundary, glass, mirror) by at least 40–60 %, compared to other existing methods

    Errors Classification Method for Electric Motor Torque Measurement

    Full text link
    The use of high-precision measuring instruments for determining the torque of electric motors in such areas as medicine, motor transport, shipping, aviation requires the improvement of the metrological characteristics of measuring instruments. This, in turn, requires an accurate assessment of their error. Of particular importance is the measurement of power at high-speed installations, where in some cases conventional measurement systems are either unsuitable or have low accuracy. Thus, the use of high-speed turbomachines in aviation, transport, and rocketry creates an urgent need for the development of high-quality measuring instruments for conducting precise research. In turn, in the absence of means for accurately determining the error, attempts are made to predict them. This makes it possible to timely identify the influence of many factors on the accuracy of measuring instruments. The increase in the error arises, as a rule, through abrupt changes in the measurement conditions. Such errors are unpredictable, and their significance is difficult to predict. In the course of the study, the K-nearest neighbors method was used, to establish criteria for which a gross error may occur. The results obtained make it possible to establish threshold values at which the maximum deviation can be established under various conditions of the experiment. In a computational experiment using the K-nearest neighbors method, the following factors were investigated: vibration; temperature rise of measuring sensors; instabilities in the supply voltage of the electric motor, which affect the accuracy of the strain gauge and frequency converter. As a result, the maximum errors were obtained depending on the indicated influence factors. It has been experimentally confirmed that the K-nearest neighbors method can be used to classify deviations of the nominal value of the error of measuring instruments under various measurement conditions. A metrological stand has been developed for the experiment. It includes a strain gauge sensor for measuring torque and a photosensitive sensor for measuring the speed of the electric motor. Signal conversion from these sensors is implemented on the basis of the ESP8266 microcontrolle

    Designing A Computerized Information Processing System to Build A Movement Trajectory of an Unmanned Aircraft Vehicle

    Full text link
    This paper addresses the issue of developing a computerized system for processing information in the construction of the trajectory of an unmanned aircraft vehicle (UAV), a remotely-piloted aviation system (RPAS), or another robotic system. Resolving this task involves the neural network learning algorithms based on the mathematical model of movement.The construction of such a trajectory between two specified destinations has been considered that provides for the possibility of bypassing static and dynamic obstacles. The specified trajectory is divided into several smaller parts. The possibility of restructuring when changing the position of obstacles in space has been considered. A UAV flight control algorithm has been developed, which implies training a neural network for bypassing obstacles of different sizes.To predict the development of the situation when an object moves between two specified points in space, it is proposed to use the Q-Learning algorithm. It has been shown that the smallest number of steps required for moving along a specified trajectory is 18, the largest is 273 steps. In case of distortion during data transmission, the training of the neural network makes it possible to reduce the possibility of collision with obstacles by improving the accuracy and speed of information transfer between the on-board computer and operator. A system of the video support to moving objects was modeled; dependence charts of the normalized frame size at different parameter values were built. Using the charts makes it possible to determine the function of the maneuver intensity. Existing neural network learning methods such as CNN and LSTM were compared. It has been proven that the success rate reaches 74 % when using CNN only, while it amounts to 92 % at the hybrid application of CNN+LSTM. The simulation results have demonstrated the high efficiency of the developed algorith
    corecore