33 research outputs found

    Are neuropsychiatric symptoms in dementia linked to CSF biomarkers of synaptic and axonal degeneration?

    Get PDF
    © 2020, The Author(s). Background: The underlying disease mechanism of neuropsychiatric symptoms (NPS) in dementia remains unclear. Cerebrospinal fluid (CSF) biomarkers for synaptic and axonal degeneration may provide novel neuropathological information for their occurrence. The aim was to investigate the relationship between NPS and CSF biomarkers for synaptic (neurogranin [Ng], growth-associated protein 43 [GAP-43]) and axonal (neurofilament light [NFL]) injury in patients with dementia. Methods: A total of 151 patients (mean age ± SD, 73.5 ± 11.0, females n = 92 [61%]) were included, of which 64 had Alzheimer’s disease (AD) (34 with high NPS, i.e., Neuropsychiatric Inventory (NPI) score > 10 and 30 with low levels of NPS) and 18 were diagnosed with vascular dementia (VaD), 27 with mixed dementia (MIX), 12 with mild cognitive impairment (MCI), and 30 with subjective cognitive impairment (SCI). NPS were primarily assessed using the NPI. CSF samples were analyzed using enzyme-linked immunosorbent assays (ELISAs) for T-tau, P-tau, Aβ1–42, Ng, NFL, and GAP-43. Results: No significant differences were seen in the CSF levels of Ng, GAP-43, and NFL between AD patients with high vs low levels of NPS (but almost significantly decreased for Ng in AD patients < 70 years with high NPS, p = 0.06). No significant associations between NPS and CSF biomarkers were seen in AD patients. In VaD (n = 17), negative correlations were found between GAP-43, Ng, NFL, and NPS. Conclusion: Our results could suggest that low levels of Ng may be associated with higher severity of NPS early in the AD continuum (age < 70). Furthermore, our data may indicate a potential relationship between the presence of NPS and synaptic as well as axonal degeneration in the setting of VaD pathology

    Analytical and clinical validation of a blood progranulin ELISA in frontotemporal dementias

    Get PDF
    Heterozygous mutations in the granulin (GRN) gene may result in haploinsufficiency of progranulin (PGRN), which might lead to frontotemporal dementia (FTD). In this study, we aimed to perform analytical and clinical validation of a commercial progranulin kit for clinical use. Analytical validation parameters including assay precision, selectivity, measurement range, dilution linearity, interferences and sample stability were tested according to previously described procedures. For clinical validation, PGRN levels were measured in plasma from 32 cognitively healthy individuals, 52 confirmed GRN mutation carriers, 25 C9orf72 mutation carriers and 216 patients with different neurodegenerative diseases of which 70 were confirmed as non-mutation carriers. Among the analytical validation parameters, assay precision and repeatability were very stable (coefficients of variation <7 %). Spike recovery was 96 %, the measurement range was 6.25-400 μg/L and dilution linearity ranged from 1:50-1:200. Hemolysis did not interfere with progranulin levels, and these were resistant to freeze/thaw cycles and storage at different temperatures. For the clinical validation, the assay was capable of distinguishing GRN mutation carriers from controls and non-GRN mutation carriers with very good sensitivity and specificity at a cut-off of 57 μg/L (97 %, 100 %, respectively). In this study, we demonstrate robust analytical and diagnostic performance of this commercial progranulin kit for implementation in clinical laboratory practice. This easy-to-use test allows identification of potential GRN mutation carriers, which may guide further evaluation of the patient. This assay might also be used to evaluate the effect of novel PGRN-targeting drugs and therapies

    Full-length and C-terminal neurogranin in Alzheimer's disease cerebrospinal fluid analyzed by novel ultrasensitive immunoassays

    Get PDF
    Background: Neurogranin (Ng) is a neuron-specific and postsynaptic protein that is abundantly expressed in the brain, particularly in the dendritic spine of the hippocampus and cerebral cortex. The enzymatic cleavage of Ng produces fragments that are released into cerebrospinal (CSF), which have been shown to be elevated in Alzheimer’s disease (AD) patients and predict cognitive decline. Thus, quantification of distinctive cleavage products of Ng could elucidate different features of the disease. Methods: In this study, we developed novel ultrasensitive single molecule array (Simoa) assays for measurement of full-length neurogranin (FL-Ng) and C-terminal neurogranin (CT-Ng) fragments in CSF. The Ng Simoa assays were evaluated in CSF samples from AD patients (N = 23), mild cognitive impairment due to AD (MCI-AD) (N = 18), and from neurological controls (N = 26). Results: The intra-assay repeatability and inter-assay precision of the novel methods had coefficients of variation below 7% and 14%, respectively. CSF FL-Ng and CSF CT-Ng median concentrations were increased in AD patients (6.02 ng/L, P < 0.00001 and 452 ng/L, P = 0.00001, respectively) and in patients with MCI-AD (5.69 ng/L, P < 0.00001 and 566 ng/L, P < 0.00001) compared to neurological controls (0.644 ng/L and 145 ng/L). The median CSF ratio of CT-Ng/FL-Ng were decreased in AD patients (ratio = 101, P = 0.008) and in patients with MCI-AD (ratio = 115, P = 0.016) compared to neurological controls (ratio = 180). CSF of FL-Ng, CT-Ng, and ratio of CT-Ng/FL-Ng could each significantly differentiate AD patients from controls (FL-Ng, AUC = 0.907; CT-Ng, AUC = 0.913; CT-Ng/FL-Ng, AUC = 0.775) and patients with MCI-AD from controls (FL-Ng, AUC = 0.937; CT-Ng, AUC = 0.963; CT-Ng/FL-Ng, AUC = 0.785). Conclusions: Assessments of the FL-Ng and CT-Ng levels in CSF with the novel sensitive immunoassays provide a high separation of AD from controls, even in early phase of the disease. The novel Ng assays are robust and highly sensitive and may be valuable tools to study synaptic alteration in AD, as well as to monitor the effect on synaptic integrity of novel drug candidates in clinical trials

    Amyloid pathology and synaptic loss in pathological aging

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid β (Aβ) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and Aβ peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion Aβ peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of Aβ40 was higher in AD while for Aβ42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of Aβ40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of Aβ

    Cerebrospinal fluid neurogranin in an inducible mouse model of neurodegeneration: A translatable marker of synaptic degeneration

    Get PDF
    Synapse impairment is thought to be an early event in Alzheimer's disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression. To gauge the translational value of Ng as a biomarker, we developed a new, highly sensitive, digital enzyme-linked immunosorbent assay (ELISA) on the Simoa platform to measure Ng in both mouse and human CSF. We investigated and confirmed that Ng levels are increased in the CSF of patients with AD compared to controls. In addition, we explored how Ng is altered in the brain and CSF of transgenic mice that display progressive neuronal loss and synaptic degeneration following the induction of p25 overexpression. In this model, we found that Ng levels increased in CSF when neurodegeneration was induced, peaking after 2 weeks, while they decreased in brain. Our data suggest that CSF Ng is a biomarker of synaptic degeneration with translational value

    γ-Secretase modulators show selectivity for γ-secretase–mediated amyloid precursor protein intramembrane processing

    Get PDF
    The aggregation of β-amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer's disease pathogenesis. Aβ42 is one of several Aβ peptides, all of Aβ30 to Aβ43 that are produced as a result of γ-secretase–mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ-Secretase modulators (GSMs) represent a promising class of Aβ42-lowering anti-amyloidogenic compounds for the treatment of AD. Gamma-secretase modulators change the relative proportion of secreted Aβ peptides, while sparing the γ-secretase–mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ-secretase cleavage of three γ-secretase substrates, E-cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ-secretase–dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ-secretase processing of EphA4 and EphB2 results in the release of several Aβ-like peptides, but that only the production of Aβ-like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aβ modulation. Collectively, these results suggest that GSMs are selective for γ-secretase–mediated Aβ production

    The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer's disease

    Get PDF
    Synaptic degeneration and neuronal loss are early events in Alzheimer's disease (AD), occurring long before symptom onset, thus making synaptic biomarkers relevant for enabling early diagnosis. The postsynaptic protein neurogranin (Ng) is a cerebrospinal fluid (CSF) biomarker for AD, also in the prodromal phase. Here we tested the hypothesis that during AD neurodegeneration, processing of full-length Ng into endogenous peptides in the brain is increased. We characterized Ng in post-mortem brain tissue and investigated the levels of endogenous Ng peptides in relation to full-length protein in brain tissue of patients with sporadic (sAD) and familial Alzheimer's disease (fAD), healthy controls and individuals who were cognitively unaffected but amyloid-positive (CU-AP) in two different brain regions. Brain tissue from parietal cortex [sAD (n = 10) and age-matched controls (n = 10)] and temporal cortex [sAD (n = 9), fAD (n = 10), CU-AP (n = 13) and controls (n = 9)] were included and all the samples were analyzed by three different methods. Using high-resolution mass spectrometry, 39 endogenous Ng peptides were identified while full-length Ng was found to be modified including disulfide bridges or glutathione. In sAD parietal cortex, the ratio of peptide-to-total full-length Ng was significantly increased for eight endogenous Ng peptides compared to controls. In the temporal cortex, several of the peptide-to-total full-length Ng ratios were increased in both sAD and fAD cases compared to controls and CU-AP. This finding was confirmed by western blot, which mainly detects full-length Ng, and enzyme-linked immunosorbent assay, most likely detecting a mix of peptides and full-length Ng. In addition, Ng was significantly associated with the degree of amyloid and tau pathology. These results suggest that processing of Ng into peptides is increased in AD brain tissue, which may reflect the ongoing synaptic degeneration, and which is also mirrored as increased levels of Ng peptides in CSF

    Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease

    Get PDF
    Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP) processing and the accumulation of APP-derived amyloid β (Aβ) peptides are key processes in Alzheimer's disease (AD). We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation.P.W.B. received funding through the Alborada Trust's support of the Alzheimer's Research UK Stem Cell Research Centre. J.S. was supported by the Innovative Medicines Initiative Consortium, StemBANCC (grant no, 115439 ). H.Z. was supported by the Swedish Research Council (grant no: 2013-2546 ) and the European Research Council (grant no: 681712 ). F.J.L. is a Wellcome Trust Senior Investigator (grant no. 101052/2/13/2 ) and gratefully acknowledges the support of the Alborada Trust and Alzheimer's Research UK (grant no. ARUK-SCRC 2014-1 ). Research in the Gurdon Institute benefits from core support from the Wellcome Trust and Cancer Research UK

    Evaluation of a novel immunoassay to detect p-Tau Thr127 in the CSF to distinguish Alzheimer disease from other dementias

    Get PDF
    OBJECTIVE: To investigate whether p-tau T217 assay in cerebrospinal fluid (CSF) can distinguish Alzheimer's disease from other dementias and healthy controls. METHODS: We developed and validated a novel Simoa immunoassay to detect p-tau T217 in CSF. There was a total of 190 participants from three cohorts with AD (n = 77) and other neurodegenerative diseases (n = 69) as well as healthy subjects (n = 44). RESULTS: The p-tau T217 assay (cut-off 242 pg/ml) identified AD subjects with accuracy of 90%, with 78% positive predictive value (PPV), 97% negative predictive value (NPV), 93% sensitivity, 88% specificity compared favorably with p-tau T181 ELISA (52 pg/ml) showing 78% accuracy, 58% PPV, 98% NPV, 71% specificity, 97% sensitivity. The assay distinguished AD patients from age-matched healthy subjects (cut-off 163 pg/ml, sensitivity 98%, specificity 93%) similarly to p-tau T181 ELISA (cut-off 60 pg/ml, 96% sensitivity and 86% specificity). In AD patients, we found a strong correlation between p-tau T217-tau and p-tau T181, t-tau and Aβ40 but not with Aβ42. CONCLUSIONS: This study demonstrates that p-tau T217 displayed better diagnostic accuracy than p-tau T181. The data suggests that the new p-tau T217 assay has a potential as an AD diagnostic test in the clinical evaluation. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that a CSF immunoassay for p-tau T217 distinguishes AD from other dementias and healthy controls

    Alzheimer-associated cerebrospinal fluid fragments of neurogranin are generated by Calpain-1 and prolyl endopeptidase

    Get PDF
    BACKGROUND: Neurogranin (Ng) is a small 7.6 kDa postsynaptic protein that has been detected at elevated concentrations in cerebrospinal fluid (CSF) of patients with Alzheimer’s disease (AD), both as a full-length molecule and as fragments from its C-terminal half. Ng is involved in postsynaptic calcium (Ca) signal transduction and memory formation via binding to calmodulin in a Ca-dependent manner. The mechanism of Ng secretion from neurons to CSF is currently unknown, but enzymatic cleavage of Ng may be of relevance. Therefore, the aim of the study was to identify the enzymes responsible for the cleavage of Ng, yielding the Ng fragment pattern of C-terminal fragments detectable and increased in CSF of AD patients. METHODS: Fluorigenic quenched FRET probes containing sequences of Ng were utilized to identify Ng cleaving activities among enzymes known to have increased activity in AD and in chromatographically fractionated mouse brain extracts. RESULTS: Human Calpain-1 and prolyl endopeptidase were identified as the candidate enzymes involved in the formation of endogenous Ng peptides present in CSF, cleaving mainly in the central region of Ng, and between amino acids 75_76 in the Ng sequence, respectively. The cleavage by Calpain-1 affects the IQ domain of Ng, which may deactivate or change the function of Ng in Ca2+/calmodulin -dependent signaling for synaptic plasticity. While shorter Ng fragments were readily cleaved in vitro by prolyl endopeptidase, the efficiency of cleavage on larger Ng fragments was much lower. CONCLUSIONS: Calpain-1 and prolyl endopeptidase cleave Ng in the IQ domain and near the C-terminus, respectively, yielding specific fragments of Ng in CSF. These fragments may give clues to the roles of increased activities of these enzymes in the pathophysiology of AD, and provide possible targets for pharmacologic intervention
    corecore