6 research outputs found

    Neurofilament light in plasma is a potential biomarker of central nervous system involvement in systemic lupus erythematosus

    Get PDF
    BACKGROUND: Neuropsychiatric manifestations (NP) are common in systemic lupus erythematosus (SLE). However, the pathophysiological mechanisms are not completely understood. Neurofilament light protein (NfL) is part of the neuronal cytoskeleton. Increased NfL concentrations, reflecting neurodegeneration, is observed in cerebrospinal fluid (CSF) in several neurodegenerative and neuroinflammatory conditions. We aimed to explore if plasma NfL could serve as a biomarker for central nervous system (CNS) involvement in SLE. METHODS: Sixty-seven patients with SLE underwent neurological examination; 52 underwent lumbar puncture, while 62 underwent cerebral magnetic resonance imaging (MRI). We measured selected auto-antibodies and other laboratory variables postulated to have roles in NP pathophysiology in the blood and/or CSF. We used SPM12 software for MRI voxel-based morphometry. RESULTS: Age-adjusted linear regression analyses revealed increased plasma NfL concentrations with increasing creatinine (β = 0.01, p < 0.001) and Q-albumin (β = 0.07, p = 0.008). We observed higher plasma NfL concentrations in patients with a history of seizures (β = 0.57, p = 0.014), impaired motor function (β = 0.36, p = 0.008), increasing disease activity (β = 0.04, p = 0.008), and organ damage (β = 0.10, p = 0.002). Voxel-based morphometry suggested an association between increasing plasma NfL concentrations and the loss of cerebral white matter in the corpus callosum and hippocampal gray matter. CONCLUSION: Increased plasma NfL concentrations were associated with some abnormal neurological, cognitive, and neuroimaging findings. However, plasma NfL was also influenced by other factors, such as damage accrual, creatinine, and Q-albumin, thereby obscuring the interpretation of how plasma NfL reflects CNS involvement. Taken together, NfL in CSF seems a better marker of neuronal injury than plasma NfL in patients with SLE

    Memory Dysfunction in Primary Sjogren's Syndrome Is Associated With Anti-NR2 Antibodies

    No full text
    ObjectiveOur understanding of the etiology and pathogenesis of neuropsychiatric involvement in primary Sjogren's syndrome (SS) is incomplete. In systemic lupus erythematosus, it has been reported that antibodies directed against N-methyl-D-aspartate receptor subtype NR2 (anti-NR2) interfere with memory and learning function, as well as mood. This has not been investigated in primary SS; however, the present study was undertaken to advance our understanding of neuropsychiatric involvement in this disease. MethodsSixty-six patients with primary SS and 66 age- and sex-matched healthy control subjects underwent clinical examination and neuropsychological evaluation. Anti-NR2 antibodies were measured in serum and cerebrospinal fluid. Hippocampus volume was estimated using software extensions to SPM5. ResultsPatients with primary SS had smaller hippocampi than healthy subjects (mean SD 8.15 +/- 0.98 cm(3) versus 8.49 +/- 0.88 cm(3); P = 0.01). In patients with primary SS, anti-NR2 antibodies in cerebrospinal fluid were associated with a worse performance in 8 of 10 memory and learning tests, and anti-NR2 antibodies in serum were associated with a worse performance in 6 of those same tests. In addition, a higher proportion of patients with depression than patients without depression had serum anti-NR2 antibody levels above the cutoff value. ConclusionResults of this study indicate that anti-NR2 antibodies may represent one of the pathogenetic mechanisms for cognitive disturbances and mood disorders in patients with primary SS.651232093217Western Norway Regional Health Authorit

    A complete set of human telomeric probes and their clinical application

    No full text
    Human chromosomes terminate with specialized telomeric structures including the simple tandem repeat (TTAGGG)n and additional complex subtelomeric repeats. Unique sequence DNA for each telomere is located 100-300 kilobases (kb) from the end of most chromosomes. A high concentration of genes and a number of candidate genes for recognizable syndromes are known to be present in telomeric regions. The human telomeric regions represent a major diagnostic challenge in clinical cytogenetics, because most of the terminal bands are G negative, and cryptic deletions and translocations in the telomeric regions are therefore difficult to detect by conventional cytogenetic methods. In fact, several submicroscopic chromosomal abnormalities in patients with undiagnosed mental retardation or multiple congenital anomalies have been identified by other molecular methods such as DNA polymorphism analysis. To improve the sensitivity for deletion detection and to determine whether such cryptic rearrangements represent a significant source of human pathology that has not been previously appreciated, it would be valuable to have specific FISH probes for all human telomeres. We report here the isolation and characterization of a complete set of specific FISH probes representing each human telomere. As most of these clones are at a known distance of within 100-300 kb from the end of the chromosome arm, this provides a 10-fold improvement in deletion detection sensitivity compared with high-resolution cytogenetics (2-3 Mb resolution). While testing these probes, we serendipitously identified a family with multiple members carrying a cryptic 1q;11p rearrangement in the balanced or unbalanced state

    Vitamin D: Cardiovascular Function and Disease

    No full text
    corecore