47 research outputs found

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles

    Get PDF
    DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle. We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications

    Wear of highly crosslinked polyethylene acetabular components: a review of RSA studies

    Get PDF
    Background and purpose - Wear rates of highly crosslinked polyethylene (XLPE) acetabular components have varied considerably between different published studies. This variation is in part due to the different techniques used to measure wear and to the errors inherent in measuring the relatively low amounts of wear in XLPE bearings. We undertook a scoping review of studies that have examined the in vivo wear of XLPE acetabular components using the most sensitive method available, radiostereometric analysis (RSA). Methods - A systematic search of the PubMed, Scopus, and Cochrane databases was performed to identify published studies in which RSA was used to measure wear of XLPE components in primary total hip arthroplasty (THA). Results - 18 publications examined 12 primary THA cohorts, comprising only 260 THAs at 2-10 years of follow-up. The mean or median proximal wear rate reported ranged from 0.00 to 0.06 mm/year. However, differences in the manner in which wear was determined made it difficult to compare some studies. Furthermore, differences in RSA methodology between studies, such as the use of supine or standing radiographs and the use of beaded or unbeaded reference segments, may limit future meta-analyses examining the effect of patient and implant variables on wear rates. Interpretation - This scoping review confirmed the low wear rates of XLPE in THA, as measured by RSA. We make recommendations to enhance the standardization of reporting of RSA wear results, which will facilitate early identification of poorly performing implants and enable a better understanding of the effects of surgical and patient factors on wear.Stuart A Callary, Lucian B Solomon, Oksana T Holubowycz, David G Campbell, Zachary Munn, and Donald W Howi

    Biomechanical analysis of the cephalomedullary nail versus the trochanteric stabilizing plate for unstable intertrochanteric femur fractures

    No full text
    © IMechE 2016. Unstable intertrochanteric fractures are commonly treated with a cephalomedullary nail due to high failure rates with a sliding hip screw. The Omega3 Trochanteric Stabilizing Plate is a relatively new device that functions like a modified sliding hip screw with a proximal extension; however, its mechanical properties have not been evaluated. This study biomechanically compared a cephalomedullary nail, that is, Gamma3 Nail against the Omega3 plate. Unstable intertrochanteric fractures were created in 24 artificial femurs. Experimental groups were as follows: Nail (i.e. Gamma3 Nail) (n = 8), Plate A (i.e. Omega3 plate with four distal non-locking screws and no proximal locking screws) (n = 8), Plate B (i.e. Plate A plus five proximal locking screws) (n = 8), Plate C (i.e. Omega3 plate with three distal locking screws and no proximal locking screws) (n = 8), and Plate D (i.e. Plate C plus five proximal locking screws) (n = 8). All specimens were stiffness tested, while the Nail and Plate D groups were also strength tested. For lateral bending, Plate B was less stiff than the Nail (p = 0.001) and Plate A (p = 0.009). For torsion, Plate A was less stiff than Plate D (p = 0.020). For axial compression, the Nail was less stiff than Plate A (p = 0.036) and Plate B (p = 0.008). Axial strength for the Nail (5014 ± 308 N) was 66% higher than the Plate D construct (2940 ± 411 N) (p \u3c 0.001). All Nails failed by partial or complete cutout through the femoral head and neck, but Plate D failed by varus collapse and deformation of the lag screw. When the cephalomedullary nail is clinically contra-indicated, this study supports the use of the Omega3 plate, since it had similar stiffness in three test modes to the Gamma3 Nail, but had lower strength. Stability of Omega3 plate constructs was not improved with locked fixation proximally or distally

    Comparison of CC triple and double bonds as spacers in push-pull chromophores

    No full text
    We report the synthesis and properties of two series of homologous donor–acceptor (D–A) chromophores in which N,N-dimethylanilino (DMA) or N,N-dihexylanilino (DHA) donors and dicyanovinyl acceptors are separated by up to four C≡C triple-bond spacers or up to three C=C double-bond spacers. The intramolecular charge-transfer (CT) interactions of the new D–A oligoynes and the known all-trans D–A oligoenes were investigated by X-ray crystallography, electrochemistry, UV/Vis spectroscopy, and theoretical calculations. In both series, the optical and electrochemical HOMO–LUMO gaps decrease with increasing spacer length. The HOMO–LUMO gaps for the D–A oligoynes and oligoenes with a given spacer length are nearly identical. The effect of the spacer length was found to level-off for spacers with more than six carbon atoms. The third-order optical nonlinearity of both series of molecules was determined by measuring the rotational averages of the third-order polarizabilities rot by degenerate four-wave mixing

    Comparison of CC triple and double bonds as spacers in push-pull chromophores

    No full text
    We report the synthesis and properties of two series of homologous donor–acceptor (D–A) chromophores in which N,N-dimethylanilino (DMA) or N,N-dihexylanilino (DHA) donors and dicyanovinyl acceptors are separated by up to four C≡C triple-bond spacers or up to three C=C double-bond spacers. The intramolecular charge-transfer (CT) interactions of the new D–A oligoynes and the known all-trans D–A oligoenes were investigated by X-ray crystallography, electrochemistry, UV/Vis spectroscopy, and theoretical calculations. In both series, the optical and electrochemical HOMO–LUMO gaps decrease with increasing spacer length. The HOMO–LUMO gaps for the D–A oligoynes and oligoenes with a given spacer length are nearly identical. The effect of the spacer length was found to level-off for spacers with more than six carbon atoms. The third-order optical nonlinearity of both series of molecules was determined by measuring the rotational averages of the third-order polarizabilities rot by degenerate four-wave mixing
    corecore