3,905 research outputs found
High-pressure and high-temperature synthesis of heavy lanthanide sesquisulfides Ln2S3 ( Ln=Yb and Lu)
Detailed pressure-temperature phase diagrams of heavy lanthanide sesquisulfides Ln2S3 (Ln = Yb and Lu) have been investigated by in-situ x-ray diffraction experiments under high pressure and high temperature using synchrotron radiation and multi-anvil press. Based on the results of the in-situ observation, the single γ-phase (Th3P4-type structure, I3d) samples of Ln2S3 (Ln = Yb and Lu) have been synthesized under high pressure. The physical properties of the compounds were studied by electrical resistivity, specific heat, and magnetic susceptibility measurements between 2 K and 300 K
Exploring the causal relationship between length of stay in hospitals and treatment outcome : Evidence from Japanese AMI patients
Fabrication of 16-main-core RE123 split wire using inner split method
For application to ultrahigh-field nuclear magnetic resonance spectroscopy (e.g., 30 T), we have started to develop a REBa2Cu3O7-δ (RE123, RE: rare earth) multi-core coated conductor in which the ceramic layers (RE123 and buffer layers) are electrically separated to create multiple filaments. This method is called electrical separation by inner splitting, and the wire is called a split wire. The multi-core structure is fabricated using electrical separation by a phase stress, which utilizes the difference in toughness between ceramics and metal, such as partial V-bending by stress along the longitudinal direction of the coated conductor using a commercially available single-core RE123 coated conductor. In addition, about 10 narrow cores (width: 5-15 μm) can be formed by one bending. These cores are called subcores. The wire is composed of main cores and subcores. In this study, a 4 mm wide multifilamentary RE123 split wire with 16 main cores and 150 subcores was fabricated and evaluated. The manufacturing method, microstructure, and critical current properties under an external magnetic field and tension are presented
Microstructural Analysis of Superconducting Joint Fabricated Using CJMB Between Gd123-coated Conductors
A superconducting joint between two Gd123-coated conductors was successfully formed using crystal growth in the bulk (CJMB). An intermediate Yb123 layer was used at the junction, and was melted to form a joint by heat treatment at a temperature below the melting point of the RE123 (such as Gd123) in the coated conductor. This liquid-phase bonding results in high tensile strength, which has exceeded 100 MPa in previous studies. Nevertheless, the joint principle has not been sufficiently clarified. In this study, we performed microstructural analysis of the joint using X-ray diffraction and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy to form a clearer understanding of the joint formation mechanism in order to achieve a high critical current in the junction
Whole-genome characterization of human group C rotaviruses: identification of two lineages in the VP3 gene
Group C rotavirus (GCRV) is distributed worldwide as an enteric pathogen in humans and animals. However, to date, whole-genome sequences are available only for a human strain (Bristol) and a porcine strain (Cowden). To investigate the genetic diversity of human GCRVs, nearly full-length sequences of all 11 RNA segments were determined for human GCRVs detected recently in India (v508), Bangladesh (BS347), China (Wu82 and YNR001) and Japan (OH567 and BK0830) and analysed phylogenetically with sequence data for GCRVs published previously. All the RNA segments of human GCRV strains except for the VP3 gene showed high levels of conservation (>93 % nucleotide sequence identity, >92 % amino acid sequence identity), belonging to a single genetic cluster distinct from those of animal GCRVs. In contrast, the VP3 genes of human GCRVs could be discriminated into two clusters, designated M2 and M3, that were distinguished phylogenetically from those of porcine and bovine GCRVs (clusters M1 and M4, respectively). Between M2 and M3, amino acid sequence identity of the VP3 gene was 84.1–84.7 %, whereas high identities were observed within each cluster (92.3–97.6 % for M2, 98.2–99.3 % for M3). Sequence divergence among the four VP3 clusters was observed throughout the amino acid sequence except for conserved motifs, including those possibly related to enzyme functions of VP3. The presence of obvious genetic diversity only in the VP3 gene among human GCRVs suggested that either the M2 or M3 VP3 gene of human GCRVs might have been derived through reassortment from an animal GCRV or from an unidentified human GCRV strain belonging to a novel genogroup
Insulin regulates Presenilin 1 localization via PI3K/Akt signaling.
Recently, insulin signaling has been highlighted in the pathology of Alzheimer's disease (AD). Although the association between insulin signaling and Tau pathology has been investigated in several studies, the interaction between insulin signaling and Presenilin 1 (PS1), a key molecule of amyloid beta (Abeta) pathology, has not been elucidated so far. In this study, we demonstrated that insulin inhibited PS1 phosphorylation at serine residues (serine 353, 357) via phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway and strengthened the trimeric complex of PS1/N-cadherin/beta-catenin, consequently relocalizing PS1 to the cell surface. Since our recent report suggests that PS1/N-cadherin/beta-catenin complex regulates Abeta production, it is likely that insulin signaling affects Abeta pathology by regulating PS1 localization
- …
